diff options
author | tlatorre <tlatorre@uchicago.edu> | 2018-08-14 09:53:09 -0500 |
---|---|---|
committer | tlatorre <tlatorre@uchicago.edu> | 2018-08-14 09:53:09 -0500 |
commit | 0b7f199c0d93074484ea580504485a32dc29f5e2 (patch) | |
tree | e167b6d102b87b7a5eca4558e7f39265d5edc502 /siphash.c | |
parent | 636595905c9f63e6bfcb6d331312090ac2075377 (diff) | |
download | sddm-0b7f199c0d93074484ea580504485a32dc29f5e2.tar.gz sddm-0b7f199c0d93074484ea580504485a32dc29f5e2.tar.bz2 sddm-0b7f199c0d93074484ea580504485a32dc29f5e2.zip |
initial commit of likelihood fit for muons
This commit contains code to fit for the energy, position, and direction of
muons in the SNO detector. Currently, we read events from SNOMAN zebra files
and fill an event struct containing the PMT hits and fit it with the Nelder
Mead simplex algorithm from GSL.
I've also added code to read in ZEBRA title bank files to read in the DQXX
files for a specific run. Any problems with channels in the DQCH and DQCR banks
are flagged in the event struct by masking in a bit in the flags variable and
these PMT hits are not included in the likelihood calculation.
The likelihood for an event is calculated by integrating along the particle
track for each PMT and computing the expected number of PE. The charge
likelihood is then calculated by looping over all possible number of PE and
computing:
P(q|n)*P(n|mu)
where q is the calibrated QHS charge, n is the number of PE, and mu is the
expected number of photoelectrons. The latter is calculated assuming the
distribution of PE at a given PMT follows a Poisson distribution (which I think
should be correct given the track, but is probably not perfect for tracks which
scatter a lot).
The time part of the likelihood is calculated by integrating over the track for
each PMT and calculating the average time at which the PMT is hit. We then
assume the PDF for the photons to arrive is approximately a delta function and
compute the first order statistic for a given time to compute the probability
that the first photon arrived at a given time. So far I've only tested this
with single tracks but the method was designed to be easy to use when you are
fitting for multiple particles.
Diffstat (limited to 'siphash.c')
-rw-r--r-- | siphash.c | 360 |
1 files changed, 360 insertions, 0 deletions
diff --git a/siphash.c b/siphash.c new file mode 100644 index 0000000..6b94190 --- /dev/null +++ b/siphash.c @@ -0,0 +1,360 @@ +/* + SipHash reference C implementation + + Copyright (c) 2012-2016 Jean-Philippe Aumasson + <jeanphilippe.aumasson@gmail.com> + Copyright (c) 2012-2014 Daniel J. Bernstein <djb@cr.yp.to> + Copyright (c) 2017 Salvatore Sanfilippo <antirez@gmail.com> + + To the extent possible under law, the author(s) have dedicated all copyright + and related and neighboring rights to this software to the public domain + worldwide. This software is distributed without any warranty. + + You should have received a copy of the CC0 Public Domain Dedication along + with this software. If not, see + <http://creativecommons.org/publicdomain/zero/1.0/>. + + ---------------------------------------------------------------------------- + + This version was modified by Salvatore Sanfilippo <antirez@gmail.com> + in the following ways: + + 1. We use SipHash 1-2. This is not believed to be as strong as the + suggested 2-4 variant, but AFAIK there are not trivial attacks + against this reduced-rounds version, and it runs at the same speed + as Murmurhash2 that we used previously, why the 2-4 variant slowed + down Redis by a 4% figure more or less. + 2. Hard-code rounds in the hope the compiler can optimize it more + in this raw from. Anyway we always want the standard 2-4 variant. + 3. Modify the prototype and implementation so that the function directly + returns an uint64_t value, the hash itself, instead of receiving an + output buffer. This also means that the output size is set to 8 bytes + and the 16 bytes output code handling was removed. + 4. Provide a case insensitive variant to be used when hashing strings that + must be considered identical by the hash table regardless of the case. + If we don't have directly a case insensitive hash function, we need to + perform a text transformation in some temporary buffer, which is costly. + 5. Remove debugging code. + 6. Modified the original test.c file to be a stand-alone function testing + the function in the new form (returing an uint64_t) using just the + relevant test vector. + */ +#include <assert.h> +#include <stdint.h> +#include <stdio.h> +#include <string.h> +#include <ctype.h> + +/* Fast tolower() alike function that does not care about locale + * but just returns a-z insetad of A-Z. */ +int siptlw(int c) { + if (c >= 'A' && c <= 'Z') { + return c+('a'-'A'); + } else { + return c; + } +} + +/* Test of the CPU is Little Endian and supports not aligned accesses. + * Two interesting conditions to speedup the function that happen to be + * in most of x86 servers. */ +#if defined(__X86_64__) || defined(__x86_64__) || defined (__i386__) +#define UNALIGNED_LE_CPU +#endif + +#define ROTL(x, b) (uint64_t)(((x) << (b)) | ((x) >> (64 - (b)))) + +#define U32TO8_LE(p, v) \ + (p)[0] = (uint8_t)((v)); \ + (p)[1] = (uint8_t)((v) >> 8); \ + (p)[2] = (uint8_t)((v) >> 16); \ + (p)[3] = (uint8_t)((v) >> 24); + +#define U64TO8_LE(p, v) \ + U32TO8_LE((p), (uint32_t)((v))); \ + U32TO8_LE((p) + 4, (uint32_t)((v) >> 32)); + +#ifdef UNALIGNED_LE_CPU +#define U8TO64_LE(p) (*((uint64_t*)(p))) +#else +#define U8TO64_LE(p) \ + (((uint64_t)((p)[0])) | ((uint64_t)((p)[1]) << 8) | \ + ((uint64_t)((p)[2]) << 16) | ((uint64_t)((p)[3]) << 24) | \ + ((uint64_t)((p)[4]) << 32) | ((uint64_t)((p)[5]) << 40) | \ + ((uint64_t)((p)[6]) << 48) | ((uint64_t)((p)[7]) << 56)) +#endif + +#define U8TO64_LE_NOCASE(p) \ + (((uint64_t)(siptlw((p)[0]))) | \ + ((uint64_t)(siptlw((p)[1])) << 8) | \ + ((uint64_t)(siptlw((p)[2])) << 16) | \ + ((uint64_t)(siptlw((p)[3])) << 24) | \ + ((uint64_t)(siptlw((p)[4])) << 32) | \ + ((uint64_t)(siptlw((p)[5])) << 40) | \ + ((uint64_t)(siptlw((p)[6])) << 48) | \ + ((uint64_t)(siptlw((p)[7])) << 56)) + +#define SIPROUND \ + do { \ + v0 += v1; \ + v1 = ROTL(v1, 13); \ + v1 ^= v0; \ + v0 = ROTL(v0, 32); \ + v2 += v3; \ + v3 = ROTL(v3, 16); \ + v3 ^= v2; \ + v0 += v3; \ + v3 = ROTL(v3, 21); \ + v3 ^= v0; \ + v2 += v1; \ + v1 = ROTL(v1, 17); \ + v1 ^= v2; \ + v2 = ROTL(v2, 32); \ + } while (0) + +uint64_t siphash(const uint8_t *in, const size_t inlen, const uint8_t *k) { +#ifndef UNALIGNED_LE_CPU + uint64_t hash; + uint8_t *out = (uint8_t*) &hash; +#endif + uint64_t v0 = 0x736f6d6570736575ULL; + uint64_t v1 = 0x646f72616e646f6dULL; + uint64_t v2 = 0x6c7967656e657261ULL; + uint64_t v3 = 0x7465646279746573ULL; + uint64_t k0 = U8TO64_LE(k); + uint64_t k1 = U8TO64_LE(k + 8); + uint64_t m; + const uint8_t *end = in + inlen - (inlen % sizeof(uint64_t)); + const int left = inlen & 7; + uint64_t b = ((uint64_t)inlen) << 56; + v3 ^= k1; + v2 ^= k0; + v1 ^= k1; + v0 ^= k0; + + for (; in != end; in += 8) { + m = U8TO64_LE(in); + v3 ^= m; + + SIPROUND; + + v0 ^= m; + } + + switch (left) { + case 7: b |= ((uint64_t)in[6]) << 48; /* fall-thru */ + case 6: b |= ((uint64_t)in[5]) << 40; /* fall-thru */ + case 5: b |= ((uint64_t)in[4]) << 32; /* fall-thru */ + case 4: b |= ((uint64_t)in[3]) << 24; /* fall-thru */ + case 3: b |= ((uint64_t)in[2]) << 16; /* fall-thru */ + case 2: b |= ((uint64_t)in[1]) << 8; /* fall-thru */ + case 1: b |= ((uint64_t)in[0]); break; + case 0: break; + } + + v3 ^= b; + + SIPROUND; + + v0 ^= b; + v2 ^= 0xff; + + SIPROUND; + SIPROUND; + + b = v0 ^ v1 ^ v2 ^ v3; +#ifndef UNALIGNED_LE_CPU + U64TO8_LE(out, b); + return hash; +#else + return b; +#endif +} + +uint64_t siphash_nocase(const uint8_t *in, const size_t inlen, const uint8_t *k) +{ +#ifndef UNALIGNED_LE_CPU + uint64_t hash; + uint8_t *out = (uint8_t*) &hash; +#endif + uint64_t v0 = 0x736f6d6570736575ULL; + uint64_t v1 = 0x646f72616e646f6dULL; + uint64_t v2 = 0x6c7967656e657261ULL; + uint64_t v3 = 0x7465646279746573ULL; + uint64_t k0 = U8TO64_LE(k); + uint64_t k1 = U8TO64_LE(k + 8); + uint64_t m; + const uint8_t *end = in + inlen - (inlen % sizeof(uint64_t)); + const int left = inlen & 7; + uint64_t b = ((uint64_t)inlen) << 56; + v3 ^= k1; + v2 ^= k0; + v1 ^= k1; + v0 ^= k0; + + for (; in != end; in += 8) { + m = U8TO64_LE_NOCASE(in); + v3 ^= m; + + SIPROUND; + + v0 ^= m; + } + + switch (left) { + case 7: b |= ((uint64_t)siptlw(in[6])) << 48; /* fall-thru */ + case 6: b |= ((uint64_t)siptlw(in[5])) << 40; /* fall-thru */ + case 5: b |= ((uint64_t)siptlw(in[4])) << 32; /* fall-thru */ + case 4: b |= ((uint64_t)siptlw(in[3])) << 24; /* fall-thru */ + case 3: b |= ((uint64_t)siptlw(in[2])) << 16; /* fall-thru */ + case 2: b |= ((uint64_t)siptlw(in[1])) << 8; /* fall-thru */ + case 1: b |= ((uint64_t)siptlw(in[0])); break; + case 0: break; + } + + v3 ^= b; + + SIPROUND; + + v0 ^= b; + v2 ^= 0xff; + + SIPROUND; + SIPROUND; + + b = v0 ^ v1 ^ v2 ^ v3; +#ifndef UNALIGNED_LE_CPU + U64TO8_LE(out, b); + return hash; +#else + return b; +#endif +} + + +/* --------------------------------- TEST ------------------------------------ */ + +#ifdef SIPHASH_TEST + +const uint8_t vectors_sip64[64][8] = { + { 0x31, 0x0e, 0x0e, 0xdd, 0x47, 0xdb, 0x6f, 0x72, }, + { 0xfd, 0x67, 0xdc, 0x93, 0xc5, 0x39, 0xf8, 0x74, }, + { 0x5a, 0x4f, 0xa9, 0xd9, 0x09, 0x80, 0x6c, 0x0d, }, + { 0x2d, 0x7e, 0xfb, 0xd7, 0x96, 0x66, 0x67, 0x85, }, + { 0xb7, 0x87, 0x71, 0x27, 0xe0, 0x94, 0x27, 0xcf, }, + { 0x8d, 0xa6, 0x99, 0xcd, 0x64, 0x55, 0x76, 0x18, }, + { 0xce, 0xe3, 0xfe, 0x58, 0x6e, 0x46, 0xc9, 0xcb, }, + { 0x37, 0xd1, 0x01, 0x8b, 0xf5, 0x00, 0x02, 0xab, }, + { 0x62, 0x24, 0x93, 0x9a, 0x79, 0xf5, 0xf5, 0x93, }, + { 0xb0, 0xe4, 0xa9, 0x0b, 0xdf, 0x82, 0x00, 0x9e, }, + { 0xf3, 0xb9, 0xdd, 0x94, 0xc5, 0xbb, 0x5d, 0x7a, }, + { 0xa7, 0xad, 0x6b, 0x22, 0x46, 0x2f, 0xb3, 0xf4, }, + { 0xfb, 0xe5, 0x0e, 0x86, 0xbc, 0x8f, 0x1e, 0x75, }, + { 0x90, 0x3d, 0x84, 0xc0, 0x27, 0x56, 0xea, 0x14, }, + { 0xee, 0xf2, 0x7a, 0x8e, 0x90, 0xca, 0x23, 0xf7, }, + { 0xe5, 0x45, 0xbe, 0x49, 0x61, 0xca, 0x29, 0xa1, }, + { 0xdb, 0x9b, 0xc2, 0x57, 0x7f, 0xcc, 0x2a, 0x3f, }, + { 0x94, 0x47, 0xbe, 0x2c, 0xf5, 0xe9, 0x9a, 0x69, }, + { 0x9c, 0xd3, 0x8d, 0x96, 0xf0, 0xb3, 0xc1, 0x4b, }, + { 0xbd, 0x61, 0x79, 0xa7, 0x1d, 0xc9, 0x6d, 0xbb, }, + { 0x98, 0xee, 0xa2, 0x1a, 0xf2, 0x5c, 0xd6, 0xbe, }, + { 0xc7, 0x67, 0x3b, 0x2e, 0xb0, 0xcb, 0xf2, 0xd0, }, + { 0x88, 0x3e, 0xa3, 0xe3, 0x95, 0x67, 0x53, 0x93, }, + { 0xc8, 0xce, 0x5c, 0xcd, 0x8c, 0x03, 0x0c, 0xa8, }, + { 0x94, 0xaf, 0x49, 0xf6, 0xc6, 0x50, 0xad, 0xb8, }, + { 0xea, 0xb8, 0x85, 0x8a, 0xde, 0x92, 0xe1, 0xbc, }, + { 0xf3, 0x15, 0xbb, 0x5b, 0xb8, 0x35, 0xd8, 0x17, }, + { 0xad, 0xcf, 0x6b, 0x07, 0x63, 0x61, 0x2e, 0x2f, }, + { 0xa5, 0xc9, 0x1d, 0xa7, 0xac, 0xaa, 0x4d, 0xde, }, + { 0x71, 0x65, 0x95, 0x87, 0x66, 0x50, 0xa2, 0xa6, }, + { 0x28, 0xef, 0x49, 0x5c, 0x53, 0xa3, 0x87, 0xad, }, + { 0x42, 0xc3, 0x41, 0xd8, 0xfa, 0x92, 0xd8, 0x32, }, + { 0xce, 0x7c, 0xf2, 0x72, 0x2f, 0x51, 0x27, 0x71, }, + { 0xe3, 0x78, 0x59, 0xf9, 0x46, 0x23, 0xf3, 0xa7, }, + { 0x38, 0x12, 0x05, 0xbb, 0x1a, 0xb0, 0xe0, 0x12, }, + { 0xae, 0x97, 0xa1, 0x0f, 0xd4, 0x34, 0xe0, 0x15, }, + { 0xb4, 0xa3, 0x15, 0x08, 0xbe, 0xff, 0x4d, 0x31, }, + { 0x81, 0x39, 0x62, 0x29, 0xf0, 0x90, 0x79, 0x02, }, + { 0x4d, 0x0c, 0xf4, 0x9e, 0xe5, 0xd4, 0xdc, 0xca, }, + { 0x5c, 0x73, 0x33, 0x6a, 0x76, 0xd8, 0xbf, 0x9a, }, + { 0xd0, 0xa7, 0x04, 0x53, 0x6b, 0xa9, 0x3e, 0x0e, }, + { 0x92, 0x59, 0x58, 0xfc, 0xd6, 0x42, 0x0c, 0xad, }, + { 0xa9, 0x15, 0xc2, 0x9b, 0xc8, 0x06, 0x73, 0x18, }, + { 0x95, 0x2b, 0x79, 0xf3, 0xbc, 0x0a, 0xa6, 0xd4, }, + { 0xf2, 0x1d, 0xf2, 0xe4, 0x1d, 0x45, 0x35, 0xf9, }, + { 0x87, 0x57, 0x75, 0x19, 0x04, 0x8f, 0x53, 0xa9, }, + { 0x10, 0xa5, 0x6c, 0xf5, 0xdf, 0xcd, 0x9a, 0xdb, }, + { 0xeb, 0x75, 0x09, 0x5c, 0xcd, 0x98, 0x6c, 0xd0, }, + { 0x51, 0xa9, 0xcb, 0x9e, 0xcb, 0xa3, 0x12, 0xe6, }, + { 0x96, 0xaf, 0xad, 0xfc, 0x2c, 0xe6, 0x66, 0xc7, }, + { 0x72, 0xfe, 0x52, 0x97, 0x5a, 0x43, 0x64, 0xee, }, + { 0x5a, 0x16, 0x45, 0xb2, 0x76, 0xd5, 0x92, 0xa1, }, + { 0xb2, 0x74, 0xcb, 0x8e, 0xbf, 0x87, 0x87, 0x0a, }, + { 0x6f, 0x9b, 0xb4, 0x20, 0x3d, 0xe7, 0xb3, 0x81, }, + { 0xea, 0xec, 0xb2, 0xa3, 0x0b, 0x22, 0xa8, 0x7f, }, + { 0x99, 0x24, 0xa4, 0x3c, 0xc1, 0x31, 0x57, 0x24, }, + { 0xbd, 0x83, 0x8d, 0x3a, 0xaf, 0xbf, 0x8d, 0xb7, }, + { 0x0b, 0x1a, 0x2a, 0x32, 0x65, 0xd5, 0x1a, 0xea, }, + { 0x13, 0x50, 0x79, 0xa3, 0x23, 0x1c, 0xe6, 0x60, }, + { 0x93, 0x2b, 0x28, 0x46, 0xe4, 0xd7, 0x06, 0x66, }, + { 0xe1, 0x91, 0x5f, 0x5c, 0xb1, 0xec, 0xa4, 0x6c, }, + { 0xf3, 0x25, 0x96, 0x5c, 0xa1, 0x6d, 0x62, 0x9f, }, + { 0x57, 0x5f, 0xf2, 0x8e, 0x60, 0x38, 0x1b, 0xe5, }, + { 0x72, 0x45, 0x06, 0xeb, 0x4c, 0x32, 0x8a, 0x95, }, +}; + + +/* Test siphash using a test vector. Returns 0 if the function passed + * all the tests, otherwise 1 is returned. + * + * IMPORTANT: The test vector is for SipHash 2-4. Before running + * the test revert back the siphash() function to 2-4 rounds since + * now it uses 1-2 rounds. */ +int siphash_test(void) { + uint8_t in[64], k[16]; + int i; + int fails = 0; + + for (i = 0; i < 16; ++i) + k[i] = i; + + for (i = 0; i < 64; ++i) { + in[i] = i; + uint64_t hash = siphash(in, i, k); + const uint8_t *v = NULL; + v = (uint8_t *)vectors_sip64; + if (memcmp(&hash, v + (i * 8), 8)) { + /* printf("fail for %d bytes\n", i); */ + fails++; + } + } + + /* Run a few basic tests with the case insensitive version. */ + uint64_t h1, h2; + h1 = siphash((uint8_t*)"hello world",11,(uint8_t*)"1234567812345678"); + h2 = siphash_nocase((uint8_t*)"hello world",11,(uint8_t*)"1234567812345678"); + if (h1 != h2) fails++; + + h1 = siphash((uint8_t*)"hello world",11,(uint8_t*)"1234567812345678"); + h2 = siphash_nocase((uint8_t*)"HELLO world",11,(uint8_t*)"1234567812345678"); + if (h1 != h2) fails++; + + h1 = siphash((uint8_t*)"HELLO world",11,(uint8_t*)"1234567812345678"); + h2 = siphash_nocase((uint8_t*)"HELLO world",11,(uint8_t*)"1234567812345678"); + if (h1 == h2) fails++; + + if (!fails) return 0; + return 1; +} + +int main(void) { + if (siphash_test() == 0) { + printf("SipHash test: OK\n"); + return 0; + } else { + printf("SipHash test: FAILED\n"); + return 1; + } +} + +#endif |