summaryrefslogtreecommitdiff
diff options
context:
space:
mode:
authorStan Seibert <stan@mtrr.org>2011-10-11 20:17:41 -0400
committerStan Seibert <stan@mtrr.org>2011-10-11 20:17:41 -0400
commit7afe85fcb0304376a76f3a0ff6f890f40dc6712b (patch)
treec07d7ba2480cbeb1d07a790210d1ba24d829fedd
parent2a670f4eaf8ab2430f0ba7918a07794e60d73045 (diff)
downloadchroma-7afe85fcb0304376a76f3a0ff6f890f40dc6712b.tar.gz
chroma-7afe85fcb0304376a76f3a0ff6f890f40dc6712b.tar.bz2
chroma-7afe85fcb0304376a76f3a0ff6f890f40dc6712b.zip
Stop returning the pdf probabilities and put the hit/not hit back into
the likelihood.
-rw-r--r--chroma/likelihood.py10
1 files changed, 5 insertions, 5 deletions
diff --git a/chroma/likelihood.py b/chroma/likelihood.py
index 93a95c3..22398e3 100644
--- a/chroma/likelihood.py
+++ b/chroma/likelihood.py
@@ -61,7 +61,7 @@ class Likelihood(object):
nreps=nreps,
ndaq=ndaq,
time_only=self.time_only)
-
+
# Normalize probabilities and put a floor to keep the log finite
hit_prob = hitcount.astype(np.float32) / ntotal
hit_prob = np.maximum(hit_prob, 0.5 / ntotal)
@@ -79,10 +79,10 @@ class Likelihood(object):
# NLL calculation: note that negation is at the end
# Start with the probabilties of hitting (or not) the channels
- hit_channel_prob = np.log(hit_prob[self.event.channels.hit]).sum() + np.log(1.0-hit_prob[~self.event.channels.hit])[1:].sum()
- hit_channel_prob_uncert = ( (ntotal * hit_prob * (1.0 - hit_prob)) / hit_prob**2 ).sum()**0.5
+ hit_channel_prob = np.log(hit_prob[self.event.channels.hit]).sum() + np.log(1.0-hit_prob[~self.event.channels.hit]).sum()
log_likelihood = ufloat((hit_channel_prob, 0.0))
- log_likelihood = ufloat((0.0,0.0)) # FIXME: skipping hit/not hit probabilities for now
+
+ #log_likelihood = ufloat((0.0,0.0)) # FIXME: skipping hit/not hit probabilities for now
# Then include the probability densities of the observed
# charges and times.
@@ -90,7 +90,7 @@ class Likelihood(object):
pdf_prob_uncert[self.event.channels.hit]))
log_likelihood += unumpy.log(hit_pdf_ufloat).sum()
- return -log_likelihood, pdf_prob
+ return -log_likelihood
def setup_kernel(self, vertex_generator, nevals, nreps, ndaq, oversample_factor):
bandwidth_generator = islice(vertex_generator, nevals*oversample_factor)