aboutsummaryrefslogtreecommitdiff
path: root/utils/plot
blob: 72a77542f3e6b6de464e3fc0bd28546100b5cc77 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
#!/usr/bin/env python
# Copyright (c) 2019, Anthony Latorre <tlatorre at uchicago>
#
# This program is free software: you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the Free
# Software Foundation, either version 3 of the License, or (at your option)
# any later version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
# more details.
#
# You should have received a copy of the GNU General Public License along with
# this program. If not, see <https://www.gnu.org/licenses/>.

from __future__ import print_function, division

# on retina screens, the default plots are way too small
# by using Qt5 and setting QT_AUTO_SCREEN_SCALE_FACTOR=1
# Qt5 will scale everything using the dpi in ~/.Xresources
import matplotlib
matplotlib.use("Qt5Agg")

if __name__ == '__main__':
    import argparse
    import matplotlib.pyplot as plt
    import numpy as np
    import h5py
    import pandas as pd
    from sddm import IDP_E_MINUS, IDP_MU_MINUS, SNOMAN_MASS
    from sddm.plot import plot_hist, plot_legend, get_stats

    parser = argparse.ArgumentParser("plot fit results")
    parser.add_argument("filenames", nargs='+', help="input files")
    args = parser.parse_args()

    for filename in args.filenames:
        print(filename)
        
        with h5py.File(filename) as f:
            ev = pd.read_hdf(filename, "ev")
            mcgn = pd.read_hdf(filename, "mcgn")
            fits = pd.read_hdf(filename, "fits")

            # get rid of 2nd events like Michel electrons
            ev = ev.sort_values(['run','gtid']).groupby(['evn'],as_index=False).nth(0)

            # Now, we merge all three datasets together to produce a single
            # dataframe. To do so, we join the ev dataframe with the mcgn frame
            # on the evn column, and then join with the fits on the run and
            # gtid columns.
            #
            # At the end we will have a single dataframe with one row for each
            # fit, i.e. it will look like:
            #
            # >>> data
            #   run   gtid nhit, ... mcgn_x, mcgn_y, mcgn_z, ..., fit_id1, fit_x, fit_y, fit_z, ...
            #
            # Before merging, we prefix the primary seed track table with mcgn_
            # and the fit table with fit_ just to make things easier.

            # Prefix track and fit frames
            mcgn = mcgn.add_prefix("mcgn_")
            fits = fits.add_prefix("fit_")

            # merge ev and mcgn on evn
            data = ev.merge(mcgn,left_on=['evn'],right_on=['mcgn_evn'])
            # merge data and fits on run and gtid
            data = data.merge(fits,left_on=['run','gtid'],right_on=['fit_run','fit_gtid'])

            # For this script, we only want the single particle fit results
            data = data[(data.fit_id2 == 0) & (data.fit_id3 == 0)]

            # Select only the best fit for a given run, gtid, and particle
            # combo
            data = data.sort_values('fit_fmin').groupby(['run','gtid','fit_id1','fit_id2','fit_id3'],as_index=False).nth(0).reset_index(level=0,drop=True)

            # calculate true kinetic energy
            mass = [SNOMAN_MASS[id] for id in data['mcgn_id'].values]
            data['T'] = data['mcgn_energy'].values - mass
            data['dx'] = data['fit_x'].values - data['mcgn_x'].values
            data['dy'] = data['fit_y'].values - data['mcgn_y'].values
            data['dz'] = data['fit_z'].values - data['mcgn_z'].values
            data['dT'] = data['fit_energy1'].values - data['T'].values

            true_dir = np.dstack((data['mcgn_dirx'],data['mcgn_diry'],data['mcgn_dirz'])).squeeze()
            dir = np.dstack((np.sin(data['fit_theta1'])*np.cos(data['fit_phi1']),
                             np.sin(data['fit_theta1'])*np.sin(data['fit_phi1']),
                             np.cos(data['fit_theta1']))).squeeze()

            data['theta'] = np.degrees(np.arccos((true_dir*dir).sum(axis=-1)))

            # only select fits which have at least 2 fits
            data = data.groupby(['run','gtid']).filter(lambda x: len(x) > 1)
            data_true = data[data['fit_id1'] == data['mcgn_id']]
            data_e = data[data['fit_id1'] == IDP_E_MINUS]
            data_mu = data[data['fit_id1'] == IDP_MU_MINUS]

            data_true = data_true.set_index(['run','gtid'])
            data_e = data_e.set_index(['run','gtid'])
            data_mu = data_mu.set_index(['run','gtid'])

            data_true['ratio'] = data_mu['fit_fmin']-data_e['fit_fmin']
            data_true['te'] = data_e['fit_time']
            data_true['tm'] = data_mu['fit_time']
            data_true['Te'] = data_e['fit_energy1']

        if len(data_true) < 2:
            continue

        mean, mean_error, std, std_error = get_stats(data_true.dT)
        print("dT      = %.2g +/- %.2g" % (mean, mean_error))
        print("std(dT) = %.2g +/- %.2g" % (std, std_error))
        mean, mean_error, std, std_error = get_stats(data_true.dx)
        print("dx      = %4.2g +/- %.2g" % (mean, mean_error))
        print("std(dx) = %4.2g +/- %.2g" % (std, std_error))
        mean, mean_error, std, std_error = get_stats(data_true.dy)
        print("dy      = %4.2g +/- %.2g" % (mean, mean_error))
        print("std(dy) = %4.2g +/- %.2g" % (std, std_error))
        mean, mean_error, std, std_error = get_stats(data_true.dz)
        print("dz      = %4.2g +/- %.2g" % (mean, mean_error))
        print("std(dz) = %4.2g +/- %.2g" % (std, std_error))
        mean, mean_error, std, std_error = get_stats(data_true.theta)
        print("std(theta) = %4.2g +/- %.2g" % (std, std_error))

        plt.figure(1)
        plot_hist(data_true.dT, label=filename)
        plt.xlabel("Kinetic Energy difference (MeV)")
        plt.figure(2)
        plot_hist(data_true.dx, label=filename)
        plt.xlabel("X Position difference (cm)")
        plt.figure(3)
        plot_hist(data_true.dy, label=filename)
        plt.xlabel("Y Position difference (cm)")
        plt.figure(4)
        plot_hist(data_true.dz, label=filename)
        plt.xlabel("Z Position difference (cm)")
        plt.figure(5)
        plot_hist(data_true.theta, label=filename)
        plt.xlabel(r"$\theta$ (deg)")
        plt.figure(6)
        plot_hist(data_true.ratio, label=filename)
        plt.xlabel(r"Log Likelihood Ratio ($e/\mu$)")
        plt.figure(7)
        plot_hist(data_true.te/1e3/60.0, label=filename)
        plt.xlabel(r"Electron Fit time (minutes)")
        plt.figure(8)
        plot_hist(data_true.tm/1e3/60.0, label=filename)
        plt.xlabel(r"Muon Fit time (minutes)")
        plt.figure(9)
        plot_hist(data_true.fit_psi/data_true.nhit, label=filename)
        plt.xlabel(r"$\Psi$/Nhit")

    plot_legend(1)
    plot_legend(2)
    plot_legend(3)
    plot_legend(4)
    plot_legend(5)
    plot_legend(6)
    plot_legend(7)
    plot_legend(8)
    plot_legend(9)
    plt.show()