1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
|
#!/usr/bin/env python
# Copyright (c) 2019, Anthony Latorre <tlatorre at uchicago>
#
# This program is free software: you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the Free
# Software Foundation, either version 3 of the License, or (at your option)
# any later version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
# more details.
#
# You should have received a copy of the GNU General Public License along with
# this program. If not, see <https://www.gnu.org/licenses/>.
from __future__ import print_function, division
import numpy as np
if __name__ == '__main__':
import ROOT
import argparse
from os.path import split
from sddm.plot import despine
from sddm import setup_matplotlib
parser = argparse.ArgumentParser("plot ROOT fit results")
parser.add_argument("filename", help="input file")
parser.add_argument("--save", action="store_true", default=False, help="save plots")
args = parser.parse_args()
setup_matplotlib(args.save)
import matplotlib.pyplot as plt
root_file = ROOT.TFile(args.filename)
head, tail = split(args.filename)
if tail.startswith("e_") or tail.startswith("electron"):
prefix = "electron"
elif tail.startswith("mu_") or tail.startswith("muon"):
prefix = "muon"
else:
prefix = ""
try:
if root_file.Get("h1"):
for hist_number, tf1_number in zip([1,2,4,5],[1,2,3,None]):
h = root_file.Get("h%i" % hist_number)
if tf1_number:
f = root_file.Get("f%i" % tf1_number)
bins = [h.GetXaxis().GetBinLowEdge(i) for i in range(1,h.GetNbinsX()+1)] + [h.GetXaxis().GetBinUpEdge(h.GetNbinsX())]
hist = [h.GetBinContent(i) for i in range(1,h.GetNbinsX()+1)]
bins = np.array(bins)
hist = np.array(hist)
bincenters = (bins[1:] + bins[:-1])/2
norm = np.trapz(hist,bincenters)
hist /= norm
fig = plt.figure()
plt.hist(bincenters,weights=hist,bins=bins,histtype='step')
x = np.linspace(bins[0],bins[-1],10000)
if tf1_number:
plt.plot(x,[f(xval)/norm for xval in x],color='red')
despine(fig,trim=True)
if hist_number == 1:
plt.gca().set_xlim(-1,1)
plt.ylabel("Arbitrary Units")
plt.xlabel(r"$\cos\theta$")
if args.save:
plt.savefig("%s_shower_angular_distribution.pdf" % prefix)
plt.savefig("%s_shower_angular_distribution.eps" % prefix)
else:
plt.title("%s Shower Angular Distribution" % prefix.capitalize())
elif hist_number == 2:
plt.ylabel("Arbitrary Units")
plt.xlabel(r"Distance along Track (cm)")
if args.save:
plt.savefig("%s_shower_position_distribution.pdf" % prefix)
plt.savefig("%s_shower_position_distribution.eps" % prefix)
else:
plt.title("%s Shower Position Distribution" % prefix.capitalize())
elif hist_number == 4:
plt.ylabel("Arbitrary Units")
plt.xlabel(r"$\cos\theta$")
if args.save:
plt.savefig("%s_delta_ray_angular_distribution.pdf" % prefix)
plt.savefig("%s_delta_ray_angular_distribution.eps" % prefix)
else:
plt.title("%s Delta Ray Angular Distribution" % prefix.capitalize())
elif hist_number == 5:
plt.ylabel("Arbitrary Units")
plt.xlabel(r"Distance along Track (cm)")
if args.save:
plt.savefig("%s_delta_ray_position_distribution.pdf" % prefix)
plt.savefig("%s_delta_ray_position_distribution.eps" % prefix)
else:
plt.title("%s Delta Ray Position Distribution" % prefix.capitalize())
else:
for graph_name, tf1_number, ylabel in zip(["g_dir_alpha","g_dir_beta","g_pos_alpha","g_pos_beta","g_dir_alpha_delta","g_dir_beta_delta"],
[1,2,None,None,3,4],
[r"$\alpha$",r"$\beta$",r"$k$",r"$\theta$",r"$\alpha$",r"$\beta$"]):
g = root_file.Get(graph_name)
if tf1_number:
f = g.GetFunction("f%i" % tf1_number)
x = [g.GetX()[i] for i in range(g.GetN())]
y = [g.GetY()[i] for i in range(g.GetN())]
yerr = [g.GetEY()[i] for i in range(g.GetN())]
x = np.array(x)
y = np.array(y)
yerr = np.array(yerr)
fig = plt.figure()
plt.errorbar(x,y,yerr=yerr,fmt='o')
x = np.linspace(x[0],x[-1],10000)
if tf1_number:
plt.plot(x,[f(xval) for xval in x],color='red')
despine(fig,trim=True)
plt.xlabel("Kinetic Energy (MeV)")
plt.ylabel(ylabel)
if graph_name == "g_dir_alpha":
if args.save:
plt.savefig("%s_shower_angular_distribution_alpha.pdf" % prefix)
plt.savefig("%s_shower_angular_distribution_alpha.eps" % prefix)
else:
plt.title("%s Shower Angular Distribution" % prefix.capitalize())
elif graph_name == "g_dir_beta":
if args.save:
plt.savefig("%s_shower_angular_distribution_beta.pdf" % prefix)
plt.savefig("%s_shower_angular_distribution_beta.eps" % prefix)
else:
plt.title("%s Shower Position Distribution" % prefix.capitalize())
elif graph_name == "g_pos_alpha":
if args.save:
plt.savefig("%s_shower_position_distribution_alpha.pdf" % prefix)
plt.savefig("%s_shower_position_distribution_alpha.eps" % prefix)
else:
plt.title("%s Shower Position Distribution" % prefix.capitalize())
elif graph_name == "g_pos_beta":
if args.save:
plt.savefig("%s_shower_position_distribution_beta.pdf" % prefix)
plt.savefig("%s_shower_position_distribution_beta.eps" % prefix)
else:
plt.title("%s Shower Position Distribution" % prefix.capitalize())
elif graph_name == "g_dir_alpha_delta":
if args.save:
plt.savefig("%s_delta_ray_angular_distribution_alpha.pdf" % prefix)
plt.savefig("%s_delta_ray_angular_distribution_alpha.eps" % prefix)
else:
plt.title("%s Delta Ray Angular Distribution" % prefix.capitalize())
elif graph_name == "g_dir_beta_delta":
if args.save:
plt.savefig("%s_delta_ray_angular_distribution_beta.pdf" % prefix)
plt.savefig("%s_delta_ray_angular_distribution_beta.eps" % prefix)
else:
plt.title("%s Delta Ray Position Distribution" % prefix.capitalize())
plt.show()
finally:
root_file.Close()
|