1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
|
#!/usr/bin/env python
# Copyright (c) 2019, Anthony Latorre <tlatorre at uchicago>
#
# This program is free software: you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the Free
# Software Foundation, either version 3 of the License, or (at your option)
# any later version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
# more details.
#
# You should have received a copy of the GNU General Public License along with
# this program. If not, see <https://www.gnu.org/licenses/>.
"""
Script to plot the energy and time difference distribution for neutrons. To run
it just run:
$ ./plot-neutrons [list of fit results]
"""
from __future__ import print_function, division
import numpy as np
from scipy.stats import iqr, poisson
from scipy.stats import iqr, norm, beta
from sddm.stats import *
import emcee
from sddm.dc import estimate_errors, EPSILON
import nlopt
from sddm import printoptions
particle_id = {20: 'e', 22: 'u'}
if __name__ == '__main__':
import argparse
import numpy as np
import pandas as pd
import sys
import h5py
from sddm.plot_energy import *
from sddm.plot import *
from sddm import setup_matplotlib
from sddm.utils import correct_energy_bias
parser = argparse.ArgumentParser("plot fit results")
parser.add_argument("filenames", nargs='+', help="input files")
parser.add_argument("--save", action='store_true', default=False, help="save corner plots for backgrounds")
parser.add_argument("--mc", nargs='+', required=True, help="atmospheric MC files")
args = parser.parse_args()
setup_matplotlib(args.save)
import matplotlib.pyplot as plt
# Loop over runs to prevent using too much memory
evs = []
rhdr = pd.concat([read_hdf(filename, "rhdr").assign(filename=filename) for filename in args.filenames],ignore_index=True)
for run, df in rhdr.groupby('run'):
evs.append(get_events(df.filename.values, merge_fits=True))
ev = pd.concat(evs)
ev = correct_energy_bias(ev)
# Note: We loop over the MC filenames here instead of just passing the
# whole list to get_events() because I had to rerun some of the MC events
# using SNOMAN and so most of the runs actually have two different files
# and otherwise the GTIDs will clash
ev_mcs = []
for filename in args.mc:
ev_mcs.append(get_events([filename], merge_fits=True, mc=True))
ev_mc = pd.concat(ev_mcs)
ev_mc = correct_energy_bias(ev_mc)
ev = ev.reset_index()
ev_mc = ev_mc.reset_index()
# remove events 200 microseconds after a muon
ev = ev.groupby('run',group_keys=False).apply(muon_follower_cut)
# 00-orphan cut
ev = ev[(ev.gtid & 0xff) != 0]
ev_mc = ev_mc[(ev_mc.gtid & 0xff) != 0]
neutrons = ev[ev.neutron]
neutrons_mc = ev_mc[ev_mc.neutron]
atm = ev[ev.signal & ev.prompt & ev.atm]
atm_mc = ev_mc[ev_mc.signal & ev_mc.prompt & ev_mc.atm]
# Drop events without fits
atm = atm[~np.isnan(atm.fmin)]
atm_mc = atm_mc[~np.isnan(atm_mc.fmin)]
atm = atm[atm.psi < 6]
atm_mc = atm_mc[atm_mc.psi < 6]
atm = pd.merge(atm,neutrons,left_on=['run','gtid'],right_on=['run','atm_gtid'],suffixes=('','_neutron'))
atm_mc = pd.merge(atm_mc,neutrons_mc,left_on=['run','gtid'],right_on=['run','atm_gtid'],suffixes=('','_neutron'))
print("neutrons with nhit > 100")
print(atm[atm.nhit_neutron >= 100][['run','gtid_neutron','nhit_neutron','nhit_cal_neutron']])
fig = plt.figure(1)
plt.hist(atm.nhit_cal_neutron.values,bins=np.linspace(0,100,101),histtype='step',color='C0',label="Data")
weights = np.tile(len(atm)/len(atm_mc),len(atm_mc))
plt.hist(atm_mc.nhit_cal_neutron.values,bins=np.linspace(0,100,101),weights=weights,histtype='step',color='C1',label="Monte Carlo")
plt.xlabel("Nhit")
despine(fig,trim=True)
plt.tight_layout()
plot_legend(1)
if args.save:
plt.savefig("neutron_nhit_cal.pdf")
plt.savefig("neutron_nhit_cal.eps")
else:
plt.title("Neutron Nhit Distribution")
fig = plt.figure(2)
dt = (atm.gtr_neutron - atm.gtr)/1e6;
bins = np.linspace(20e-3,250,101)
plt.hist(dt,bins=bins,histtype='step',color='C0',label="Data")
dt = (atm_mc.gtr_neutron - atm_mc.gtr)/1e6;
plt.hist(dt,bins=bins,weights=weights,histtype='step',color='C1',label="Monte Carlo")
plt.xlabel(r"$\Delta$ t (ms)")
despine(fig,trim=True)
plt.tight_layout()
plot_legend(1)
if args.save:
plt.savefig("neutron_delta_t.pdf")
plt.savefig("neutron_delta_t.eps")
else:
plt.title(r"Neutron $\Delta t$ Distribution")
plt.show()
|