aboutsummaryrefslogtreecommitdiff
path: root/utils/plot-muons
blob: 532400a3c66c4ad6a7ffdfa9c7cdc5cee1d10426 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
#!/usr/bin/env python
# Copyright (c) 2019, Anthony Latorre <tlatorre at uchicago>
#
# This program is free software: you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the Free
# Software Foundation, either version 3 of the License, or (at your option)
# any later version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
# more details.
#
# You should have received a copy of the GNU General Public License along with
# this program. If not, see <https://www.gnu.org/licenses/>.
"""
Script to plot the fit results for stopping muons and Michels. To run it just
run:

    $ ./plot-muon [list of fit results]

Currently it will plot energy distributions for external muons, stopping muons,
and michel electrons.
"""
from __future__ import print_function, division
import numpy as np
from scipy.stats import iqr, poisson
from scipy.stats import iqr, norm, beta
from sddm.stats import *
import nlopt
from sddm.dc import estimate_errors

particle_id = {20: 'e', 22: 'u'}

def print_particle_probs(data):
    n = [len(data[data.id == id]) for id in (20,22,2020,2022,2222)]

    alpha = np.ones_like(n) + n

    mode = dirichlet_mode(alpha)
    std = np.sqrt(dirichlet.var(alpha))

    for i, id in enumerate((20,22,2020,2022,2222)):
        particle_id_str = ''.join([particle_id[int(''.join(x))] for x in grouper(str(id),2)])
        print("P(%s) = %.2f +/- %.2f" % (particle_id_str,mode[i]*100,std[i]*100))

def fit_straight_line(y, yerr):
    def nll(x, grad=None):
        nll = -norm.logpdf(x,y,yerr).sum()
        return nll

    x0 = np.array([np.mean(y)])
    opt = nlopt.opt(nlopt.LN_SBPLX, len(x0))
    opt.set_min_objective(nll)
    low = np.array([-1e9])
    high = np.array([1e9])
    opt.set_lower_bounds(low)
    opt.set_upper_bounds(high)
    opt.set_ftol_abs(1e-10)
    opt.set_initial_step([0.01])

    xopt = opt.optimize(x0)
    nll_xopt = nll(xopt)

    stepsizes = estimate_errors(nll,xopt,low,high)

    return xopt[0], stepsizes[0]

if __name__ == '__main__':
    import argparse
    import numpy as np
    import pandas as pd
    import sys
    import h5py
    from sddm.plot_energy import *
    from sddm.plot import *
    from sddm import setup_matplotlib
    from sddm.utils import correct_energy_bias

    parser = argparse.ArgumentParser("plot fit results")
    parser.add_argument("filenames", nargs='+', help="input files")
    parser.add_argument("--save", action='store_true', default=False, help="save corner plots for backgrounds")
    parser.add_argument("--mc", nargs='+', required=True, help="atmospheric MC files")
    args = parser.parse_args()

    setup_matplotlib(args.save)

    import matplotlib.pyplot as plt

    # Loop over runs to prevent using too much memory
    evs = []
    rhdr = pd.concat([read_hdf(filename, "rhdr").assign(filename=filename) for filename in args.filenames],ignore_index=True)
    for run, df in rhdr.groupby('run'):
        evs.append(get_events(df.filename.values, merge_fits=True))
    ev = pd.concat(evs)
    ev = correct_energy_bias(ev)
    ev_mc = get_events(args.mc, merge_fits=True, mc=True)
    ev_mc = correct_energy_bias(ev_mc)

    # Drop events without fits
    ev = ev[~np.isnan(ev.fmin)]
    ev_mc = ev_mc[~np.isnan(ev_mc.fmin)]

    # Set all prompt events in the MC to be muons
    ev_mc.loc[ev_mc.prompt,'muon'] = True

    # First, do basic data cleaning which is done for all events.
    ev = ev[ev.signal | ev.muon]
    ev_mc = ev_mc[ev_mc.signal | ev_mc.muon]

    # 00-orphan cut
    ev = ev[(ev.gtid & 0xff) != 0]
    ev_mc = ev_mc[(ev_mc.gtid & 0xff) != 0]

    # Now, we select events tagged by the muon tag which should tag only
    # external muons. We keep the sample of muons since it's needed later to
    # identify Michel electrons and to apply the muon follower cut
    muons = ev[ev.muon]
    muons_mc = ev_mc[ev_mc.muon]

    # Try to identify Michel electrons. Currently, the event selection is based
    # on Richie's thesis. Here, we do the following:
    #
    # 1. Apply more data cleaning cuts to potential Michel electrons
    # 2. Nhit >= 100
    # 3. It must be > 800 ns and less than 20 microseconds from a prompt event
    #    or a muon
    michel = ev[ev.michel]
    michel_mc = ev_mc[ev_mc.michel]

    # remove events 200 microseconds after a muon
    ev = ev.groupby('run',group_keys=False).apply(muon_follower_cut)

    muons = muons[muons.psi < 6]
    muons_mc = muons_mc[muons_mc.psi < 6]

    handles = [Line2D([0], [0], color='C0'),
               Line2D([0], [0], color='C1')]
    labels = ('Data','Monte Carlo')

    fig = plt.figure()
    plot_hist2_data_mc(muons,muons_mc)
    despine(fig,trim=True)
    if len(muons):
        plt.tight_layout()
    fig.legend(handles,labels,loc='upper right')
    if args.save:
        plt.savefig("external_muons.pdf")
        plt.savefig("external_muons.eps")
    else:
        plt.suptitle("External Muons")

    # Plot the energy and angular distribution for external muons
    fig = plt.figure()
    plt.subplot(2,1,1)
    plt.hist(muons.ke.values, bins=np.logspace(3,7,100), histtype='step', color='C0', label="Data")
    scale = len(muons.ke.values)/len(muons_mc.ke.values)
    plt.hist(muons_mc.ke.values, weights=np.tile(scale,len(muons_mc.ke.values)), bins=np.logspace(3,7,100), histtype='step', color='C1', label="Monte Carlo")
    plt.legend()
    plt.xlabel("Energy (MeV)")
    plt.gca().set_xscale("log")
    plt.subplot(2,1,2)
    plt.hist(np.cos(muons.theta.values), bins=np.linspace(-1,1,100), histtype='step', color='C0', label="Data")
    scale = len(muons.theta.values)/len(muons_mc.theta.values)
    plt.hist(np.cos(muons_mc.theta.values), weights=np.tile(scale,len(muons_mc.ke.values)), bins=np.linspace(-1,1,100), histtype='step', color='C1', label="Monte Carlo")
    plt.legend()
    despine(fig,trim=True)
    plt.xlabel(r"$\cos(\theta)$")
    plt.tight_layout()
    if args.save:
        plt.savefig("muon_energy_cos_theta.pdf")
        plt.savefig("muon_energy_cos_theta.eps")
    else:
        plt.suptitle("Muons")

    stopping_muons = pd.merge(ev[ev.muon & ev.stopping_muon],michel,left_on=['run','gtid'],right_on=['run','muon_gtid'],suffixes=('','_michel'))
    stopping_muons_mc = pd.merge(ev_mc[ev_mc.muon & ev_mc.stopping_muon],michel_mc,left_on=['run','gtid'],right_on=['run','muon_gtid'],suffixes=('','_michel'))

    stopping_muons = stopping_muons[stopping_muons.ke < 10e3]
    stopping_muons_mc = stopping_muons_mc[stopping_muons_mc.ke < 10e3]

    stopping_muons = stopping_muons[stopping_muons.cos_theta < -0.5]
    stopping_muons_mc = stopping_muons_mc[stopping_muons_mc.cos_theta < -0.5]

    # project muon to PSUP
    stopping_muons['dx'] = stopping_muons.apply(get_dx,axis=1)
    stopping_muons_mc['dx'] = stopping_muons_mc.apply(get_dx,axis=1)
    # energy based on distance travelled
    stopping_muons['T_dx'] = dx_to_energy(stopping_muons.dx)
    stopping_muons_mc['T_dx'] = dx_to_energy(stopping_muons_mc.dx)
    stopping_muons['dT'] = stopping_muons['ke'] - stopping_muons['T_dx']
    stopping_muons_mc['dT'] = stopping_muons_mc['ke'] - stopping_muons_mc['T_dx']

    # Plot the energy and angular distribution for external muons
    fig = plt.figure()
    plt.subplot(2,1,1)
    plt.hist(stopping_muons.ke.values, bins=np.logspace(3,7,100), histtype='step', color='C0', label="Data")
    scale = len(stopping_muons.ke.values)/len(stopping_muons_mc.ke.values)
    plt.hist(stopping_muons_mc.ke.values, weights=np.tile(scale,len(stopping_muons_mc.ke.values)), bins=np.logspace(3,7,100), histtype='step', color='C1', label="Monte Carlo")
    plt.legend()
    plt.xlabel("Energy (MeV)")
    plt.gca().set_xscale("log")
    plt.subplot(2,1,2)
    plt.hist(np.cos(stopping_muons.theta.values), bins=np.linspace(-1,1,100), histtype='step', color='C0', label="Data")
    scale = len(stopping_muons.theta.values)/len(stopping_muons_mc.theta.values)
    plt.hist(np.cos(stopping_muons_mc.theta.values), weights=np.tile(scale,len(stopping_muons_mc.theta.values)), bins=np.linspace(-1,1,100), histtype='step', color='C1', label="Monte Carlo")
    plt.legend()
    despine(fig,trim=True)
    plt.xlabel(r"$\cos(\theta)$")
    plt.tight_layout()
    if args.save:
        plt.savefig("stopping_muon_energy_cos_theta.pdf")
        plt.savefig("stopping_muon_energy_cos_theta.eps")
    else:
        plt.suptitle("Stopping Muons")

    print(stopping_muons[['run','gtid','ke','T_dx','dT','gtid_michel','r_michel','ftp_r_michel','id','r']])

    print("Particle ID probability for Stopping Muons:")
    print("Data")
    print_particle_probs(stopping_muons)
    print("Monte Carlo")
    print_particle_probs(stopping_muons_mc)

    fig = plt.figure()
    plot_hist2_data_mc(stopping_muons,stopping_muons_mc)
    despine(fig,trim=True)
    if len(muons):
        plt.tight_layout()
    fig.legend(handles,labels,loc='upper right')
    if args.save:
        plt.savefig("stopping_muons.pdf")
        plt.savefig("stopping_muons.eps")
    else:
        plt.suptitle("Stopping Muons")

    fig = plt.figure()
    plt.hist((stopping_muons['ke']-stopping_muons['T_dx'])*100/stopping_muons['T_dx'], bins=np.linspace(-100,100,200), histtype='step', color='C0', label="Data")
    plt.hist((stopping_muons_mc['ke']-stopping_muons_mc['T_dx'])*100/stopping_muons_mc['T_dx'], bins=np.linspace(-100,100,200), histtype='step', color='C1', label="Monte Carlo")
    plt.legend()
    despine(fig,trim=True)
    plt.xlabel("Fractional energy difference (\%)")
    plt.title("Fractional energy difference for Stopping Muons")
    plt.tight_layout()
    if args.save:
        plt.savefig("stopping_muon_fractional_energy_difference.pdf")
        plt.savefig("stopping_muon_fractional_energy_difference.eps")
    else:
        plt.title("Stopping Muon Fractional Energy Difference")

    # 100 bins between 50 MeV and 10 GeV
    bins = np.linspace(50,2000,10)

    pd_bins = pd.cut(stopping_muons['T_dx'],bins)
    pd_bins_mc = pd.cut(stopping_muons_mc['T_dx'],bins)

    T = (bins[1:] + bins[:-1])/2

    dT = stopping_muons.groupby(pd_bins)['dT'].agg(['mean','sem','std',std_err,median,median_err,iqr_std,iqr_std_err])
    dT_mc = stopping_muons_mc.groupby(pd_bins_mc)['dT'].agg(['mean','sem','std',std_err,median,median_err,iqr_std,iqr_std_err])

    y = (dT['median']*100/T-dT_mc['median']*100/T).values
    yerr = np.sqrt((dT['median_err']*100/T)**2+(dT_mc['median_err']*100/T)**2).values
    mean, std = fit_straight_line(y,yerr)

    print("Data energy bias = %.2f +/- %.2f" % (mean, std))

    fig, (a0, a1) = plt.subplots(2, 1, gridspec_kw={'height_ratios': [3, 1]})
    a0.errorbar(T, dT['median']*100/T, yerr=dT['median_err']*100/T, fmt='o', color='C0', label="Data")
    a0.errorbar(T, dT_mc['median']*100/T, yerr=dT_mc['median_err']*100/T, fmt='o', color='C1', label="Monte Carlo")
    despine(ax=a0,trim=True)
    a0.set_ylabel(r"Energy bias (\%)")
    a0.legend()
    a1.errorbar(T, dT['median']*100/T-dT_mc['median']*100/T, yerr=np.sqrt((dT['median_err']*100/T)**2+(dT_mc['median_err']*100/T)**2), fmt='o', color='C0')
    a1.hlines(mean,T[0],T[-1],linestyles='--',color='r')
    a1.set_ylim(0,25)
    despine(ax=a1,trim=True)
    a1.set_xlabel("Kinetic Energy (MeV)")
    a1.set_ylabel(r"Difference (\%)")
    plt.tight_layout()
    if args.save:
        plt.savefig("stopping_muon_energy_bias.pdf")
        plt.savefig("stopping_muon_energy_bias.eps")
    else:
        plt.suptitle("Stopping Muon Energy Bias")

    y = (dT['iqr_std']*100/T-dT_mc['iqr_std']*100/T).values
    yerr = np.sqrt((dT['iqr_std_err']*100/T)**2+(dT_mc['iqr_std_err']*100/T)**2).values
    mean, std = fit_straight_line(y,yerr)

    print("Data energy resolution = %.2f +/- %.2f" % (mean, std))

    fig, (a0, a1) = plt.subplots(2, 1, gridspec_kw={'height_ratios': [3, 1]})
    a0.errorbar(T, dT['iqr_std']*100/T, yerr=dT['iqr_std_err']*100/T, fmt='o', color='C0', label="Data")
    a0.errorbar(T, dT_mc['iqr_std']*100/T, yerr=dT_mc['iqr_std_err']*100/T, fmt='o', color='C1', label="Monte Carlo")
    a0.set_ylabel(r"Energy resolution (\%)")
    despine(ax=a0,trim=True)
    a0.legend()
    a1.errorbar(T, dT['iqr_std']*100/T-dT_mc['iqr_std']*100/T, yerr=np.sqrt((dT['iqr_std_err']*100/T)**2+(dT_mc['iqr_std_err']*100/T)**2), fmt='o', color='C0')
    a1.hlines(mean,T[0],T[-1],linestyles='--',color='r')
    despine(ax=a1,trim=True)
    a1.set_xlabel("Kinetic Energy (MeV)")
    a1.set_ylabel(r"Difference (\%)")
    plt.tight_layout()
    if args.save:
        plt.savefig("stopping_muon_energy_resolution.pdf")
        plt.savefig("stopping_muon_energy_resolution.eps")
    else:
        plt.title("Stopping Muon Energy Resolution")

    # For the Michel energy plot, we only look at events where the
    # corresponding muon had less than 2500 nhit.  The reason for only looking
    # at Michel electrons from muons with less than 2500 nhit is because there
    # is significant ringing and afterpulsing after a large muon which can
    # cause the reconstruction to overestimate the energy.
    michel_low_nhit = michel[michel.muon_gtid.isin(stopping_muons.gtid.values) & (michel.muon_nhit < 2500)]
    michel_low_nhit_mc = michel_mc[michel_mc.muon_gtid.isin(stopping_muons_mc.gtid.values) & (michel_mc.muon_nhit < 2500)]

    print("Particle ID probability for Michel electrons:")
    print("Data")
    print_particle_probs(michel_low_nhit)
    print("Monte Carlo")
    print_particle_probs(michel_low_nhit_mc)

    fig = plt.figure()
    plot_hist2_data_mc(michel_low_nhit,michel_low_nhit_mc)
    despine(fig,trim=True)
    fig.legend(handles,labels,loc='upper right')
    if args.save:
        plt.savefig("michel_electrons.pdf")
        plt.savefig("michel_electrons.eps")
    else:
        plt.suptitle("Michel Electrons")

    fig = plt.figure()
    bins = np.linspace(0,100,41)
    plt.hist(michel_low_nhit.ke.values, bins=bins, histtype='step', color='C0', label="Data")
    plt.hist(michel_low_nhit_mc.ke.values, weights=np.tile(len(michel_low_nhit)/len(michel_low_nhit_mc),len(michel_low_nhit_mc.ke.values)), bins=bins, histtype='step', color='C1', label="Monte Carlo")
    hist = np.histogram(michel_low_nhit.ke.values,bins=bins)[0]
    hist_mc = np.histogram(michel_low_nhit_mc.ke.values,bins=bins)[0]
    if hist_mc.sum() > 0:
        scale = hist.sum()/hist_mc.sum()
    else:
        scale = 1.0
    p = get_multinomial_prob(hist,hist_mc,scale)
    plt.text(0.95,0.95,"p = %.2f" % p,horizontalalignment='right',verticalalignment='top',transform=plt.gca().transAxes)
    despine(fig,trim=True)
    plt.xlabel("Energy (MeV)")
    plt.tight_layout()
    plt.legend()
    if args.save:
        plt.savefig("michel_electrons_ke.pdf")
        plt.savefig("michel_electrons_ke.eps")
    else:
        plt.title("Michel Electrons")
        plt.show()