aboutsummaryrefslogtreecommitdiff
path: root/utils/plot-likelihood
blob: 24422367669ac769ee888c58354b2c7345a66b7d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
#!/usr/bin/env python
# Copyright (c) 2019, Anthony Latorre <tlatorre at uchicago>
#
# This program is free software: you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the Free
# Software Foundation, either version 3 of the License, or (at your option)
# any later version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
# more details.
#
# You should have received a copy of the GNU General Public License along with
# this program. If not, see <https://www.gnu.org/licenses/>.

from __future__ import print_function, division
import numpy as np

# on retina screens, the default plots are way too small
# by using Qt5 and setting QT_AUTO_SCREEN_SCALE_FACTOR=1
# Qt5 will scale everything using the dpi in ~/.Xresources
import matplotlib
matplotlib.use("Qt5Agg")

if __name__ == '__main__':
    import argparse
    from mpl_toolkits.mplot3d import axes3d
    import matplotlib.pyplot as plt

    parser = argparse.ArgumentParser("plot likelihood function")
    parser.add_argument("filenames", nargs='+', help="input files")
    args = parser.parse_args()

    for filename in args.filenames:
        print(filename)
        data = np.genfromtxt(filename)

        fig = plt.figure()
        ax = fig.add_subplot(111, projection='3d')

        X = data[:,0].reshape((50,50))
        Y = data[:,1].reshape((50,50))
        Z = data[:,2].reshape((50,50))

        ax.plot_wireframe(X, Y, Z)

    plt.show()
pan>] = np.sin(phi) t = np.zeros(nphotons, dtype=np.float32) wavelengths = np.empty(nphotons, np.float32) wavelengths.fill(400.0) photons = Photons(pos=pos, dir=dir, pol=pol, t=t, wavelengths=wavelengths) # First make one step to check for strangeness photons_end = sim.simulate([photons], keep_photons_end=True, max_steps=1).next().photons_end self.assertFalse(np.isnan(photons_end.pos).any()) self.assertFalse(np.isnan(photons_end.dir).any()) self.assertFalse(np.isnan(photons_end.pol).any()) self.assertFalse(np.isnan(photons_end.t).any()) self.assertFalse(np.isnan(photons_end.wavelengths).any()) # Now let it run the usual ten steps photons_end = sim.simulate([photons], keep_photons_end=True, max_steps=10).next().photons_end aborted = (photons_end.flags & (1 << 31)) > 0 print 'aborted photons: %1.1f' % \ (float(count_nonzero(aborted)) / nphotons) self.assertFalse(aborted.any())