aboutsummaryrefslogtreecommitdiff
path: root/utils/plot-fit-results
diff options
context:
space:
mode:
Diffstat (limited to 'utils/plot-fit-results')
0 files changed, 0 insertions, 0 deletions
56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221
#!/usr/bin/env python
# Copyright (c) 2019, Anthony Latorre <tlatorre at uchicago>
#
# This program is free software: you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the Free
# Software Foundation, either version 3 of the License, or (at your option)
# any later version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
# more details.
#
# You should have received a copy of the GNU General Public License along with
# this program. If not, see <https://www.gnu.org/licenses/>.

from __future__ import print_function, division
import numpy as np
from scipy.stats import iqr
from matplotlib.lines import Line2D

# on retina screens, the default plots are way too small
# by using Qt5 and setting QT_AUTO_SCREEN_SCALE_FACTOR=1
# Qt5 will scale everything using the dpi in ~/.Xresources
import matplotlib
matplotlib.use("Qt5Agg")

matplotlib.rc('font', size=22)

IDP_E_MINUS  =    20
IDP_MU_MINUS =    22

SNOMAN_MASS = {
    20: 0.511,
    21: 0.511,
    22: 105.658,
    23: 105.658
}

def plot_hist(x, label=None):
    # determine the bin width using the Freedman Diaconis rule
    # see https://en.wikipedia.org/wiki/Freedman%E2%80%93Diaconis_rule
    h = 2*iqr(x)/len(x)**(1/3)
    n = max(int((np.max(x)-np.min(x))/h),10)
    bins = np.linspace(np.min(x),np.max(x),n)
    plt.hist(x, bins=bins, histtype='step', label=label)

def plot_legend(n):
    plt.figure(n)
    ax = plt.gca()
    handles, labels = ax.get_legend_handles_labels()
    new_handles = [Line2D([],[],c=h.get_edgecolor()) for h in handles]
    plt.legend(handles=new_handles,labels=labels)

def get_stats(x):
    """
    Returns a tuple (mean, error mean, std, error std) for the values in x.

    The formula for the standard error on the standard deviation comes from
    https://stats.stackexchange.com/questions/156518.
    """
    mean = np.mean(x)
    std = np.std(x)
    n = len(x)
    u4 = np.mean((x-mean)**4)
    error = np.sqrt((u4-(n-3)*std**4/(n-1))/n)/(2*std)
    return mean, std/np.sqrt(n), std, error

def std_err(x):
    x = x.dropna()
    mean = np.mean(x)
    std = np.std(x)
    n = len(x)
    if n == 0:
        return np.nan
    u4 = np.mean((x-mean)**4)
    error = np.sqrt((u4-(n-3)*std**4/(n-1))/n)/(2*std)
    return error

if __name__ == '__main__':
    import argparse
    import matplotlib.pyplot as plt
    import numpy as np
    import h5py
    import pandas as pd

    parser = argparse.ArgumentParser("plot fit results")
    parser.add_argument("filenames", nargs='+', help="input files")
    args = parser.parse_args()

    # Read in all the data.
    #
    # Note: We have to add the filename as a column to each dataset since this
    # script is used to analyze MC data which all has the same run number.
    ev = pd.concat([pd.read_hdf(filename, "ev").assign(filename=filename) for filename in args.filenames],ignore_index=True)
    fits = pd.concat([pd.read_hdf(filename, "fits").assign(filename=filename) for filename in args.filenames],ignore_index=True)
    mcgn = pd.concat([pd.read_hdf(filename, "mcgn").assign(filename=filename) for filename in args.filenames],ignore_index=True)

    # get rid of 2nd events like Michel electrons
    ev = ev.sort_values(['run','gtid']).groupby(['filename','evn'],as_index=False).nth(0)

    # Now, we merge all three datasets together to produce a single
    # dataframe. To do so, we join the ev dataframe with the mcgn frame
    # on the evn column, and then join with the fits on the run and
    # gtid columns.
    #
    # At the end we will have a single dataframe with one row for each
    # fit, i.e. it will look like:
    #
    # >>> data
    #   run   gtid nhit, ... mcgn_x, mcgn_y, mcgn_z, ..., fit_id1, fit_x, fit_y, fit_z, ...
    #
    # Before merging, we prefix the primary seed track table with mcgn_
    # and the fit table with fit_ just to make things easier.

    # Prefix track and fit frames
    mcgn = mcgn.add_prefix("mcgn_")
    fits = fits.add_prefix("fit_")

    # merge ev and mcgn on evn
    data = ev.merge(mcgn,left_on=['filename','evn'],right_on=['mcgn_filename','mcgn_evn'])
    # merge data and fits on run and gtid
    data = data.merge(fits,left_on=['filename','run','gtid'],right_on=['fit_filename','fit_run','fit_gtid'])

    # calculate true kinetic energy
    mass = [SNOMAN_MASS[id] for id in data['mcgn_id'].values]
    data['T'] = data['mcgn_energy'].values - mass
    data['dx'] = data['fit_x'].values - data['mcgn_x'].values
    data['dy'] = data['fit_y'].values - data['mcgn_y'].values
    data['dz'] = data['fit_z'].values - data['mcgn_z'].values
    data['dT'] = data['fit_energy1'].values - data['T'].values

    true_dir = np.dstack((data['mcgn_dirx'],data['mcgn_diry'],data['mcgn_dirz'])).squeeze()
    dir = np.dstack((np.sin(data['fit_theta1'])*np.cos(data['fit_phi1']),
                     np.sin(data['fit_theta1'])*np.sin(data['fit_phi1']),
                     np.cos(data['fit_theta1']))).squeeze()

    data['theta'] = np.degrees(np.arccos((true_dir*dir).sum(axis=-1)))

    # only select fits which have at least 2 fits
    data = data.groupby(['filename','run','gtid']).filter(lambda x: len(x) > 1)
    data_true = data[data['fit_id1'] == data['mcgn_id']]
    data_e = data[data['fit_id1'] == IDP_E_MINUS]
    data_mu = data[data['fit_id1'] == IDP_MU_MINUS]

    data_true = data_true.set_index(['filename','run','gtid'])
    data_e = data_e.set_index(['filename','run','gtid'])
    data_mu = data_mu.set_index(['filename','run','gtid'])

    data_true['ratio'] = data_mu['fit_fmin']-data_e['fit_fmin']
    data_true['te'] = data_e['fit_time']
    data_true['tm'] = data_mu['fit_time']
    data_true['Te'] = data_e['fit_energy1']

    # 100 bins between 50 MeV and 1 GeV
    bins = np.arange(50,1000,100)

    for id in [IDP_E_MINUS, IDP_MU_MINUS]:
        events = data_true[data_true['mcgn_id'] == id]

        pd_bins = pd.cut(events['T'],bins)

        dT = events.groupby(pd_bins)['dT'].agg(['mean','sem','std',std_err])
        dx = events.groupby(pd_bins)['dx'].agg(['mean','sem','std',std_err])
        dy = events.groupby(pd_bins)['dy'].agg(['mean','sem','std',std_err])
        dz = events.groupby(pd_bins)['dz'].agg(['mean','sem','std',std_err])
        theta = events.groupby(pd_bins)['theta'].agg(['mean','sem','std',std_err])

        label = 'Muon' if id == IDP_MU_MINUS else 'Electron'

        T = (bins[1:] + bins[:-1])/2

        plt.figure(1)
        plt.errorbar(T,dT['mean']*100/T,yerr=dT['sem']*100/T,fmt='o',label=label)
        plt.xlabel("Kinetic Energy (MeV)")
        plt.ylabel("Energy bias (%)")
        plt.title("Energy Bias")
        plt.legend()

        plt.figure(2)
        plt.errorbar(T,dT['std']*100/T,yerr=dT['std_err']*100/T,fmt='o',label=label)
        plt.xlabel("Kinetic Energy (MeV)")
        plt.ylabel("Energy resolution (%)")
        plt.title("Energy Resolution")
        plt.legend()

        plt.figure(3)
        plt.errorbar(T,dx['mean'],yerr=dx['sem'],fmt='o',label='%s (x)' % label)
        plt.errorbar(T,dy['mean'],yerr=dy['sem'],fmt='o',label='%s (y)' % label)
        plt.errorbar(T,dz['mean'],yerr=dz['sem'],fmt='o',label='%s (z)' % label)
        plt.xlabel("Kinetic Energy (MeV)")
        plt.ylabel("Position bias (cm)")
        plt.title("Position Bias")
        plt.legend()

        plt.figure(4)
        plt.errorbar(T,dx['std'],yerr=dx['std_err'],fmt='o',label='%s (x)' % label)
        plt.errorbar(T,dy['std'],yerr=dy['std_err'],fmt='o',label='%s (y)' % label)
        plt.errorbar(T,dz['std'],yerr=dz['std_err'],fmt='o',label='%s (z)' % label)
        plt.xlabel("Kinetic Energy (MeV)")
        plt.ylabel("Position resolution (cm)")
        plt.title("Position Resolution")
        plt.ylim((0,plt.gca().get_ylim()[1]))
        plt.legend()

        plt.figure(5)
        plt.errorbar(T,theta['std'],yerr=theta['std_err'],fmt='o',label=label)
        plt.xlabel("Kinetic Energy (MeV)")
        plt.ylabel("Angular resolution (deg)")
        plt.title("Angular Resolution")
        plt.ylim((0,plt.gca().get_ylim()[1]))
        plt.legend()

        plt.figure(6)
        plt.scatter(events['Te'],events['ratio'],label=label)
        plt.xlabel("Reconstructed Electron Energy (MeV)")
        plt.ylabel(r"Log Likelihood Ratio (e/$\mu$)")
        plt.title("Log Likelihood Ratio vs Reconstructed Electron Energy")
        plt.legend()

    plt.show()