1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
|
#!/usr/bin/env python
# Copyright (c) 2019, Anthony Latorre <tlatorre at uchicago>
#
# This program is free software: you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the Free
# Software Foundation, either version 3 of the License, or (at your option)
# any later version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
# more details.
#
# You should have received a copy of the GNU General Public License along with
# this program. If not, see <https://www.gnu.org/licenses/>.
"""
Script to plot final fit results along with sidebands for the dark matter
analysis. To run it just run:
$ ./plot-energy [list of fit results]
Currently it will plot energy distributions for external muons, michel
electrons, atmospheric events with neutron followers, and prompt signal like
events. Each of these plots will have a different subplot for the particle ID
of the best fit, i.e. single electron, single muon, double electron, electron +
muon, or double muon.
When run with the --dc command line argument it instead produces corner plots
showing the distribution of the high level variables used in the contamination
analysis for all the different instrumental backgrounds and external muons.
"""
from __future__ import print_function, division
import numpy as np
from scipy.stats import iqr, poisson
from matplotlib.lines import Line2D
from scipy.stats import iqr, norm, beta
from scipy.special import spence
from itertools import izip_longest
particle_id = {20: 'e', 22: r'\mu'}
def plot_hist2(df, muons=False):
for id, df_id in sorted(df.groupby('id')):
if id == 20:
plt.subplot(2,3,1)
elif id == 22:
plt.subplot(2,3,2)
elif id == 2020:
plt.subplot(2,3,4)
elif id == 2022:
plt.subplot(2,3,5)
elif id == 2222:
plt.subplot(2,3,6)
if muons:
plt.hist(np.log10(df_id.ke.values/1000), bins=np.linspace(0,4.5,100), histtype='step')
plt.xlabel("log10(Energy (GeV))")
else:
bins = np.logspace(np.log10(20),np.log10(10e3),21)
plt.hist(df_id.ke.values, bins=bins, histtype='step')
plt.gca().set_xscale("log")
plt.xlabel("Energy (MeV)")
plt.title('$' + ''.join([particle_id[int(''.join(x))] for x in grouper(str(id),2)]) + '$')
if len(df):
plt.tight_layout()
def plot_hist(df, muons=False):
for id, df_id in sorted(df.groupby('id')):
if id == 20:
plt.subplot(3,4,1)
elif id == 22:
plt.subplot(3,4,2)
elif id == 2020:
plt.subplot(3,4,5)
elif id == 2022:
plt.subplot(3,4,6)
elif id == 2222:
plt.subplot(3,4,7)
elif id == 202020:
plt.subplot(3,4,9)
elif id == 202022:
plt.subplot(3,4,10)
elif id == 202222:
plt.subplot(3,4,11)
elif id == 222222:
plt.subplot(3,4,12)
if muons:
plt.hist(np.log10(df_id.ke.values/1000), bins=np.linspace(0,4.5,100), histtype='step')
plt.xlabel("log10(Energy (GeV))")
else:
plt.hist(df_id.ke.values, bins=np.linspace(20,10e3,100), histtype='step')
plt.xlabel("Energy (MeV)")
plt.title(str(id))
if len(df):
plt.tight_layout()
if __name__ == '__main__':
import argparse
import numpy as np
import pandas as pd
import sys
import h5py
from sddm.plot_energy import *
from sddm.plot import despine
from sddm import setup_matplotlib
parser = argparse.ArgumentParser("plot fit results")
parser.add_argument("filenames", nargs='+', help="input files")
parser.add_argument("--dc", action='store_true', default=False, help="plot corner plots for backgrounds")
parser.add_argument("--save", action='store_true', default=False, help="save corner plots for backgrounds")
args = parser.parse_args()
setup_matplotlib(args.save)
import matplotlib.pyplot as plt
ev = pd.concat([pd.read_hdf(filename, "ev") for filename in args.filenames],ignore_index=True)
fits = pd.concat([pd.read_hdf(filename, "fits") for filename in args.filenames],ignore_index=True)
rhdr = pd.concat([pd.read_hdf(filename, "rhdr") for filename in args.filenames],ignore_index=True)
first_gtid = rhdr.set_index('run').to_dict()['first_gtid']
# First, remove junk events since orphans won't have a 50 MHz clock and so
# could screw up the 50 MHz clock unwrapping
ev = ev[ev.dc & DC_JUNK == 0]
# We need the events to be in time order here in order to calculate the
# delta t between events. It's not obvious exactly how to do this. You
# could sort by GTID, but that wraps around. Similarly we can't sort by the
# 50 MHz clock because it also wraps around. Finally, I'm hesitant to sort
# by the 10 MHz clock since it can be unreliable.
#
# Update: Phil proposed a clever way to get the events in order using the
# GTID:
#
# > The GTID rollover should be easy to handle because there should never
# > be two identical GTID's in a run. So if you order the events by GTID,
# > you can assume that events with GTID's that come logically before the
# > first GTID in the run must have occurred after the other events.
#
# Therefore, we can just add 0x1000000 to all GTIDs before the first GTID
# in the event and sort on that. We get the first GTID from the RHDR bank.
ev['gtid_sort'] = ev['gtid'].copy()
ev = ev.groupby('run',as_index=False).apply(gtid_sort,first_gtid=first_gtid).reset_index(level=0,drop=True)
ev = ev.sort_values(by=['run','gtid_sort'],kind='mergesort')
for run, ev_run in ev.groupby('run'):
# Warn about 50 MHz clock jumps since they could indicate that the
# events aren't in order.
dt = np.diff(ev_run.gtr)
if np.count_nonzero((np.abs(dt) > 1e9) & (dt > -0x7ffffffffff*20.0/2)):
print_warning("Warning: %i 50 MHz clock jumps in run %i. Are the events in order?" % \
(np.count_nonzero((np.abs(dt) > 1e9) & (dt > -0x7ffffffffff*20.0/2)),run))
# unwrap the 50 MHz clock within each run
ev.gtr = ev.groupby(['run'],group_keys=False)['gtr'].transform(unwrap_50_mhz_clock)
for run, ev_run in ev.groupby('run'):
# Warn about GTID jumps since we could be missing a potential flasher
# and/or breakdown, and we need all the events in order to do a
# retrigger cut
if np.count_nonzero(np.diff(ev_run.gtid) != 1):
print_warning("Warning: %i GTID jumps in run %i" % (np.count_nonzero(np.diff(ev_run.gtid) != 1),run))
# calculate the time difference between each event and the previous event
# so we can tag retrigger events
ev['dt'] = ev.groupby(['run'],group_keys=False)['gtr'].transform(lambda x: np.concatenate(([1e9],np.diff(x.values))))
# Calculate the approximate Ockham factor.
# See Chapter 20 in "Probability Theory: The Logic of Science" by Jaynes
#
# Note: This is a really approximate form by assuming that the shape of
# the likelihood space is equal to the average uncertainty in the
# different parameters.
fits['w'] = fits['n']*np.log(0.05/10e3) + np.log(fits['energy1']) + fits['n']*np.log(1e-4/(4*np.pi))
# Apply a fudge factor to the Ockham factor of 100 for each extra particle
# FIXME: I chose 100 a while ago but didn't really investigate what the
# optimal value was or exactly why it was needed. Should do this.
fits['w'] -= fits['n']*100
# Note: we index on the left hand site with loc to avoid a copy error
#
# See https://www.dataquest.io/blog/settingwithcopywarning/
fits.loc[fits['n'] > 1, 'w'] += np.log(fits[fits['n'] > 1]['energy2'])
fits.loc[fits['n'] > 2, 'w'] += np.log(fits[fits['n'] > 2]['energy3'])
fits['fmin'] = fits['fmin'] - fits['w']
# See https://stackoverflow.com/questions/11976503/how-to-keep-index-when-using-pandas-merge
# for how to properly divide the psi column by nhit_cal which is in the ev
# dataframe before we actually merge
fits['psi'] /= fits.reset_index().merge(ev,on=['run','gtid']).set_index('index')['nhit_cal']
fits.loc[fits['n'] == 1,'ke'] = fits['energy1']
fits.loc[fits['n'] == 2,'ke'] = fits['energy1'] + fits['energy2']
fits.loc[fits['n'] == 3,'ke'] = fits['energy1'] + fits['energy2'] + fits['energy3']
fits['id'] = fits['id1']
fits.loc[fits['n'] == 2, 'id'] = fits['id1']*100 + fits['id2']
fits.loc[fits['n'] == 3, 'id'] = fits['id1']*10000 + fits['id2']*100 + fits['id3']
fits['theta'] = fits['theta1']
fits['r'] = np.sqrt(fits.x**2 + fits.y**2 + fits.z**2)
fits['r_psup'] = (fits['r']/PSUP_RADIUS)**3
ev['ftp_r'] = np.sqrt(ev.ftp_x**2 + ev.ftp_y**2 + ev.ftp_z**2)
ev['ftp_r_psup'] = (ev['ftp_r']/PSUP_RADIUS)**3
print("number of events = %i" % len(ev))
# Now, select prompt events.
#
# We define a prompt event here as any event with an NHIT > 100 and whose
# previous > 100 nhit event was more than 250 ms ago
#
# Note: It's important we do this *before* applying the data cleaning cuts
# since otherwise we may have a prompt event identified only after the
# cuts.
#
# For example, suppose there was a breakdown and for whatever reason
# the *second* event after the breakdown didn't get tagged correctly. If we
# apply the data cleaning cuts first and then tag prompt events then this
# event will get tagged as a prompt event.
ev = ev.groupby('run',group_keys=False).apply(prompt_event)
print("number of events after prompt nhit cut = %i" % np.count_nonzero(ev.prompt))
# flasher follower cut
ev = ev.groupby('run',group_keys=False).apply(flasher_follower_cut)
# breakdown follower cut
ev = ev.groupby('run',group_keys=False).apply(breakdown_follower_cut)
# retrigger cut
ev = ev.groupby('run',group_keys=False).apply(retrigger_cut)
if args.dc:
ev = ev[ev.prompt]
ev.set_index(['run','gtid'])
ev = pd.merge(fits,ev,how='inner',on=['run','gtid'])
ev_single_particle = ev[(ev.id2 == 0) & (ev.id3 == 0)]
ev_single_particle = ev_single_particle.sort_values('fmin').groupby(['run','gtid']).nth(0)
ev = ev.sort_values('fmin').groupby(['run','gtid']).nth(0)
ev['cos_theta'] = np.cos(ev['theta1'])
ev['udotr'] = np.sin(ev_single_particle.theta1)*np.cos(ev_single_particle.phi1)*ev_single_particle.x + \
np.sin(ev_single_particle.theta1)*np.sin(ev_single_particle.phi1)*ev_single_particle.y + \
np.cos(ev_single_particle.theta1)*ev_single_particle.z
ev['udotr'] /= ev.r
flashers = ev[ev.dc & (DC_JUNK | DC_CRATE_ISOTROPY | DC_QVNHIT | DC_FLASHER | DC_NECK | DC_ITC | DC_BREAKDOWN) == DC_FLASHER]
muon = ev[ev.dc & (DC_JUNK | DC_CRATE_ISOTROPY | DC_QVNHIT | DC_FLASHER | DC_NECK | DC_ITC | DC_BREAKDOWN | DC_MUON) == DC_MUON]
neck = ev[(ev.dc & (DC_JUNK | DC_CRATE_ISOTROPY | DC_QVNHIT | DC_NECK)) == DC_NECK]
noise = ev[(ev.dc & (DC_ITC | DC_QVNHIT | DC_JUNK | DC_CRATE_ISOTROPY)) != 0]
breakdown = ev[ev.nhit >= 1000]
breakdown = breakdown[breakdown.dc & (DC_JUNK | DC_CRATE_ISOTROPY | DC_QVNHIT | DC_NECK | DC_ITC) == 0]
breakdown = breakdown[breakdown.dc & (DC_FLASHER | DC_BREAKDOWN) != 0]
signal = ev[ev.dc & (DC_JUNK | DC_CRATE_ISOTROPY | DC_QVNHIT | DC_FLASHER | DC_NECK | DC_ITC | DC_BREAKDOWN | DC_MUON) == 0]
with pd.option_context('display.max_rows', None, 'display.max_columns', None):
print("Noise events")
print(noise[['psi','x','y','z','id1','id2']])
print("Muons")
print(muon[['psi','r','id1','id2','id3','energy1','energy2','energy3']])
print("Neck")
print(neck[neck.psi < 6][['psi','r','id1','cos_theta']])
print("Flashers")
print(flashers[flashers.udotr > 0])
print("Signal")
print(signal)
# save as PDF b/c EPS doesn't support alpha values
if args.save:
plot_corner_plot(breakdown,"Breakdowns",save="breakdown_corner_plot")
plot_corner_plot(muon,"Muons",save="muon_corner_plot")
plot_corner_plot(flashers,"Flashers",save="flashers_corner_plot")
plot_corner_plot(neck,"Neck",save="neck_corner_plot")
plot_corner_plot(noise,"Noise",save="noise_corner_plot")
plot_corner_plot(signal,"Signal",save="signal_corner_plot")
else:
plot_corner_plot(breakdown,"Breakdowns")
plot_corner_plot(muon,"Muons")
plot_corner_plot(flashers,"Flashers")
plot_corner_plot(neck,"Neck")
plot_corner_plot(noise,"Noise")
plot_corner_plot(signal,"Signal")
fig = plt.figure()
plot_hist2(flashers)
despine(fig,trim=True)
plt.suptitle("Flashers")
fig = plt.figure()
plot_hist2(muon,muons=True)
despine(fig,trim=True)
plt.suptitle("Muons")
plt.show()
sys.exit(0)
# First, do basic data cleaning which is done for all events.
ev = ev[ev.dc & (DC_JUNK | DC_CRATE_ISOTROPY | DC_QVNHIT | DC_FLASHER | DC_NECK | DC_ITC | DC_BREAKDOWN) == 0]
# 00-orphan cut
ev = ev[(ev.gtid & 0xff) != 0]
print("number of events after data cleaning = %i" % np.count_nonzero(ev.prompt))
# Now, we select events tagged by the muon tag which should tag only
# external muons. We keep the sample of muons since it's needed later to
# identify Michel electrons and to apply the muon follower cut
muons = ev[(ev.dc & DC_MUON) != 0]
print("number of muons = %i" % len(muons))
# Try to identify Michel electrons. Currently, the event selection is based
# on Richie's thesis. Here, we do the following:
#
# 1. Apply more data cleaning cuts to potential Michel electrons
# 2. Nhit >= 100
# 3. It must be > 800 ns and less than 20 microseconds from a prompt event
# or a muon
michel = ev.groupby('run',group_keys=False).apply(michel_cut)
print("number of michel events = %i" % len(michel))
# Tag atmospheric events.
#
# Note: We don't cut atmospheric events or muons yet because we still need
# all the events in order to apply the muon follower cut.
ev = ev.groupby('run',group_keys=False).apply(atmospheric_events)
print("number of events after neutron follower cut = %i" % np.count_nonzero(ev.prompt & (~ev.atm)))
# remove events 200 microseconds after a muon
ev = ev.groupby('run',group_keys=False).apply(muon_follower_cut)
# Get rid of muon events in our main event sample
ev = ev[(ev.dc & DC_MUON) == 0]
prompt = ev[ev.prompt & ~ev.atm]
atm = ev[ev.atm]
print("number of events after muon cut = %i" % len(prompt))
# Check to see if there are any events with missing fit information
atm_ra = atm[['run','gtid']].to_records(index=False)
muons_ra = muons[['run','gtid']].to_records(index=False)
prompt_ra = prompt[['run','gtid']].to_records(index=False)
michel_ra = michel[['run','gtid']].to_records(index=False)
fits_ra = fits[['run','gtid']].to_records(index=False)
if len(atm_ra) and np.count_nonzero(~np.isin(atm_ra,fits_ra)):
print_warning("skipping %i atmospheric events because they are missing fit information!" % np.count_nonzero(~np.isin(atm_ra,fits_ra)))
if len(muons_ra) and np.count_nonzero(~np.isin(muons_ra,fits_ra)):
print_warning("skipping %i muon events because they are missing fit information!" % np.count_nonzero(~np.isin(muons_ra,fits_ra)))
if len(prompt_ra) and np.count_nonzero(~np.isin(prompt_ra,fits_ra)):
print_warning("skipping %i signal events because they are missing fit information!" % np.count_nonzero(~np.isin(prompt_ra,fits_ra)))
if len(michel_ra) and np.count_nonzero(~np.isin(michel_ra,fits_ra)):
print_warning("skipping %i Michel events because they are missing fit information!" % np.count_nonzero(~np.isin(michel_ra,fits_ra)))
# Now, we merge the event info with the fitter info.
#
# Note: This means that the dataframe now contains multiple rows for each
# event, one for each fit hypothesis.
atm = pd.merge(fits,atm,how='inner',on=['run','gtid'])
muons = pd.merge(fits,muons,how='inner',on=['run','gtid'])
michel = pd.merge(fits,michel,how='inner',on=['run','gtid'])
prompt = pd.merge(fits,prompt,how='inner',on=['run','gtid'])
# get rid of events which don't have a fit
nan = np.isnan(prompt.fmin.values)
if np.count_nonzero(nan):
print_warning("skipping %i signal events because the negative log likelihood is nan!" % len(prompt[nan].groupby(['run','gtid'])))
prompt = prompt[~nan]
nan_atm = np.isnan(atm.fmin.values)
if np.count_nonzero(nan_atm):
print_warning("skipping %i atmospheric events because the negative log likelihood is nan!" % len(atm[nan_atm].groupby(['run','gtid'])))
atm = atm[~nan_atm]
nan_muon = np.isnan(muons.fmin.values)
if np.count_nonzero(nan_muon):
print_warning("skipping %i muons because the negative log likelihood is nan!" % len(muons[nan_muon].groupby(['run','gtid'])))
muons = muons[~nan_muon]
nan_michel = np.isnan(michel.fmin.values)
if np.count_nonzero(nan_michel):
print_warning("skipping %i michel electron events because the negative log likelihood is nan!" % len(michel[nan_michel].groupby(['run','gtid'])))
michel = michel[~nan_michel]
# get the best fit
prompt = prompt.sort_values('fmin').groupby(['run','gtid']).nth(0)
atm = atm.sort_values('fmin').groupby(['run','gtid']).nth(0)
michel_best_fit = michel.sort_values('fmin').groupby(['run','gtid']).nth(0)
muon_best_fit = muons.sort_values('fmin').groupby(['run','gtid']).nth(0)
muons = muons[muons.id == 22].sort_values('fmin').groupby(['run','gtid'],as_index=False).nth(0).reset_index(level=0,drop=True)
# require (r/r_psup)^3 < 0.9
prompt = prompt[prompt.r_psup < 0.9]
atm = atm[atm.r_psup < 0.9]
print("number of events after radius cut = %i" % len(prompt))
# require psi < 6
prompt = prompt[prompt.psi < 6]
atm = atm[atm.psi < 6]
print("number of events after psi cut = %i" % len(prompt))
fig = plt.figure()
plot_hist2(prompt)
despine(fig,trim=True)
if args.save:
plt.savefig("prompt.pdf")
plt.savefig("prompt.eps")
else:
plt.suptitle("Without Neutron Follower")
fig = plt.figure()
plot_hist2(atm)
despine(fig,trim=True)
if args.save:
plt.savefig("atm.pdf")
plt.savefig("atm.eps")
else:
plt.suptitle("With Neutron Follower")
fig = plt.figure()
plot_hist2(michel_best_fit)
despine(fig,trim=True)
if args.save:
plt.savefig("michel_electrons.pdf")
plt.savefig("michel_electrons.eps")
else:
plt.suptitle("Michel Electrons")
fig = plt.figure()
plot_hist2(muon_best_fit,muons=True)
despine(fig,trim=True)
if len(muon_best_fit):
plt.tight_layout()
if args.save:
plt.savefig("external_muons.pdf")
plt.savefig("external_muons.eps")
else:
plt.suptitle("External Muons")
# Plot the energy and angular distribution for external muons
fig = plt.figure()
plt.subplot(2,1,1)
plt.hist(muons.ke.values, bins=np.logspace(3,7,100), histtype='step')
plt.xlabel("Energy (MeV)")
plt.gca().set_xscale("log")
plt.subplot(2,1,2)
plt.hist(np.cos(muons.theta.values), bins=np.linspace(-1,1,100), histtype='step')
despine(fig,trim=True)
plt.xlabel(r"$\cos(\theta)$")
plt.tight_layout()
if args.save:
plt.savefig("muon_energy_cos_theta.pdf")
plt.savefig("muon_energy_cos_theta.eps")
else:
plt.suptitle("Muons")
# For the Michel energy plot, we only look at the single particle electron
# fit
michel = michel[michel.id == 20].sort_values('fmin').groupby(['run','gtid'],as_index=False).nth(0).reset_index(level=0,drop=True)
stopping_muons = pd.merge(muons,michel,left_on=['run','gtid'],right_on=['run','muon_gtid'],suffixes=('','_michel'))
if len(stopping_muons):
# project muon to PSUP
stopping_muons['dx'] = stopping_muons.apply(get_dx,axis=1)
# energy based on distance travelled
stopping_muons['T_dx'] = dx_to_energy(stopping_muons.dx)
stopping_muons['dT'] = stopping_muons['energy1'] - stopping_muons['T_dx']
fig = plt.figure()
plt.hist((stopping_muons['energy1']-stopping_muons['T_dx'])*100/stopping_muons['T_dx'], bins=np.linspace(-100,100,200), histtype='step')
despine(fig,trim=True)
plt.xlabel("Fractional energy difference (\%)")
plt.title("Fractional energy difference for Stopping Muons")
plt.tight_layout()
if args.save:
plt.savefig("stopping_muon_fractional_energy_difference.pdf")
plt.savefig("stopping_muon_fractional_energy_difference.eps")
else:
plt.title("Stopping Muon Fractional Energy Difference")
# 100 bins between 50 MeV and 10 GeV
bins = np.arange(50,10000,1000)
pd_bins = pd.cut(stopping_muons['energy1'],bins)
T = (bins[1:] + bins[:-1])/2
dT = stopping_muons.groupby(pd_bins)['dT'].agg(['mean','sem','std',std_err,median,median_err,iqr_std,iqr_std_err])
fig = plt.figure()
plt.errorbar(T,dT['median']*100/T,yerr=dT['median_err']*100/T)
despine(fig,trim=True)
plt.xlabel("Kinetic Energy (MeV)")
plt.ylabel(r"Energy bias (\%)")
plt.tight_layout()
if args.save:
plt.savefig("stopping_muon_energy_bias.pdf")
plt.savefig("stopping_muon_energy_bias.eps")
else:
plt.title("Stopping Muon Energy Bias")
fig = plt.figure()
plt.errorbar(T,dT['iqr_std']*100/T,yerr=dT['iqr_std_err']*100/T)
despine(fig,trim=True)
plt.xlabel("Kinetic Energy (MeV)")
plt.ylabel(r"Energy resolution (\%)")
plt.tight_layout()
if args.save:
plt.savefig("stopping_muon_energy_resolution.pdf")
plt.savefig("stopping_muon_energy_resolution.eps")
else:
plt.title("Stopping Muon Energy Resolution")
fig = plt.figure()
bins=np.linspace(0,100,100)
plt.hist(michel.ke.values, bins=bins, histtype='step', label="Dark Matter Fitter")
if michel.size:
plt.hist(michel[~np.isnan(michel.rsp_energy.values)].rsp_energy.values, bins=np.linspace(20,100,100), histtype='step',label="RSP")
x = np.linspace(0,100,1000)
y = michel_spectrum(x)
y /= np.trapz(y,x=x)
N = len(michel)
plt.plot(x, N*y*(bins[1]-bins[0]), ls='--', color='k', label="Michel Spectrum")
despine(fig,trim=True)
plt.xlabel("Energy (MeV)")
plt.tight_layout()
plt.legend()
if args.save:
plt.savefig("michel_electrons_ke.pdf")
plt.savefig("michel_electrons_ke.eps")
else:
plt.title("Michel Electrons")
plt.show()
|