1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
|
#!/usr/bin/env python
# Copyright (c) 2019, Anthony Latorre <tlatorre at uchicago>
#
# This program is free software: you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the Free
# Software Foundation, either version 3 of the License, or (at your option)
# any later version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
# more details.
#
# You should have received a copy of the GNU General Public License along with
# this program. If not, see <https://www.gnu.org/licenses/>.
"""
Script to plot final fit results along with sidebands for the dark matter
analysis. To run it just run:
$ ./plot-energy [list of fit results]
Currently it will plot energy distributions for external muons, michel
electrons, atmospheric events with neutron followers, and prompt signal like
events. Each of these plots will have a different subplot for the particle ID
of the best fit, i.e. single electron, single muon, double electron, electron +
muon, or double muon.
When run with the --dc command line argument it instead produces corner plots
showing the distribution of the high level variables used in the contamination
analysis for all the different instrumental backgrounds and external muons.
"""
from __future__ import print_function, division
import numpy as np
from scipy.stats import iqr, poisson
from matplotlib.lines import Line2D
from scipy.stats import iqr, norm, beta
from scipy.special import spence
from itertools import izip_longest
PSUP_RADIUS = 840.0
# from https://stackoverflow.com/questions/287871/how-to-print-colored-text-in-terminal-in-python
class bcolors:
HEADER = '\033[95m'
OKBLUE = '\033[94m'
OKGREEN = '\033[92m'
WARNING = '\033[93m'
FAIL = '\033[91m'
ENDC = '\033[0m'
BOLD = '\033[1m'
UNDERLINE = '\033[4m'
# on retina screens, the default plots are way too small
# by using Qt5 and setting QT_AUTO_SCREEN_SCALE_FACTOR=1
# Qt5 will scale everything using the dpi in ~/.Xresources
import matplotlib
matplotlib.use("Qt5Agg")
font = {'family':'serif', 'serif': ['computer modern roman']}
matplotlib.rc('font',**font)
matplotlib.rc('text', usetex=True)
SNOMAN_MASS = {
20: 0.511,
21: 0.511,
22: 105.658,
23: 105.658
}
AV_RADIUS = 600.0
# Data cleaning bitmasks.
DC_MUON = 0x1
DC_JUNK = 0x2
DC_CRATE_ISOTROPY = 0x4
DC_QVNHIT = 0x8
DC_NECK = 0x10
DC_FLASHER = 0x20
DC_ESUM = 0x40
DC_OWL = 0x80
DC_OWL_TRIGGER = 0x100
DC_FTS = 0x200
DC_ITC = 0x400
DC_BREAKDOWN = 0x800
particle_id = {20: 'e', 22: r'\mu'}
def grouper(iterable, n, fillvalue=None):
"Collect data into fixed-length chunks or blocks"
# grouper('ABCDEFG', 3, 'x') --> ABC DEF Gxx
args = [iter(iterable)] * n
return izip_longest(fillvalue=fillvalue, *args)
def plot_hist2(df, muons=False):
for id, df_id in sorted(df.groupby('id')):
if id == 20:
plt.subplot(2,3,1)
elif id == 22:
plt.subplot(2,3,2)
elif id == 2020:
plt.subplot(2,3,4)
elif id == 2022:
plt.subplot(2,3,5)
elif id == 2222:
plt.subplot(2,3,6)
if muons:
plt.hist(np.log10(df_id.ke.values/1000), bins=np.linspace(0,4.5,100), histtype='step')
plt.xlabel("log10(Energy (GeV))")
else:
plt.hist(df_id.ke.values, bins=np.linspace(20,10e3,100), histtype='step')
plt.xlabel("Energy (MeV)")
plt.title('$' + ''.join([particle_id[int(''.join(x))] for x in grouper(str(id),2)]) + '$')
if len(df):
plt.tight_layout()
def plot_hist(df, muons=False):
for id, df_id in sorted(df.groupby('id')):
if id == 20:
plt.subplot(3,4,1)
elif id == 22:
plt.subplot(3,4,2)
elif id == 2020:
plt.subplot(3,4,5)
elif id == 2022:
plt.subplot(3,4,6)
elif id == 2222:
plt.subplot(3,4,7)
elif id == 202020:
plt.subplot(3,4,9)
elif id == 202022:
plt.subplot(3,4,10)
elif id == 202222:
plt.subplot(3,4,11)
elif id == 222222:
plt.subplot(3,4,12)
if muons:
plt.hist(np.log10(df_id.ke.values/1000), bins=np.linspace(0,4.5,100), histtype='step')
plt.xlabel("log10(Energy (GeV))")
else:
plt.hist(df_id.ke.values, bins=np.linspace(20,10e3,100), histtype='step')
plt.xlabel("Energy (MeV)")
plt.title(str(id))
if len(df):
plt.tight_layout()
def chunks(l, n):
"""Yield successive n-sized chunks from l."""
for i in range(0, len(l), n):
yield l[i:i + n]
def print_warning(msg):
print(bcolors.FAIL + msg + bcolors.ENDC,file=sys.stderr)
def unwrap(p, delta, axis=-1):
"""
A modified version of np.unwrap() useful for unwrapping the 50 MHz clock.
It unwraps discontinuities bigger than delta/2 by delta.
Example:
>>> a = np.arange(10) % 5
>>> a
array([0, 1, 2, 3, 4, 0, 1, 2, 3, 4])
>>> unwrap(a,5)
array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9.])
In the case of the 50 MHz clock delta should be 0x7ffffffffff*20.0.
"""
p = np.asarray(p)
nd = p.ndim
dd = np.diff(p, axis=axis)
slice1 = [slice(None, None)]*nd # full slices
slice1[axis] = slice(1, None)
slice1 = tuple(slice1)
ddmod = np.mod(dd + delta/2, delta) - delta/2
np.copyto(ddmod, delta/2, where=(ddmod == -delta/2) & (dd > 0))
ph_correct = ddmod - dd
np.copyto(ph_correct, 0, where=abs(dd) < delta/2)
up = np.array(p, copy=True, dtype='d')
up[slice1] = p[slice1] + ph_correct.cumsum(axis)
return up
def unwrap_50_mhz_clock(gtr):
"""
Unwrap an array with 50 MHz clock times. These times should all be in
nanoseconds and come from the KEV_GTR variable in the EV bank.
Note: We assume here that the events are already ordered contiguously by
GTID, so you shouldn't pass an array with multiple runs!
"""
return unwrap(gtr,0x7ffffffffff*20.0)
def retrigger_cut(ev):
"""
Cuts all retrigger events.
"""
return ev[ev.dt > 500]
def breakdown_follower_cut(ev):
"""
Cuts all events within 1 second of breakdown events.
"""
breakdowns = ev[ev.dc & DC_BREAKDOWN != 0]
return ev[~np.any((ev.gtr.values > breakdowns.gtr.values[:,np.newaxis]) & \
(ev.gtr.values < breakdowns.gtr.values[:,np.newaxis] + 1e9),axis=0)]
def flasher_follower_cut(ev):
"""
Cuts all events within 200 microseconds of flasher events.
"""
flashers = ev[ev.dc & DC_FLASHER != 0]
return ev[~np.any((ev.gtr.values > flashers.gtr.values[:,np.newaxis]) & \
(ev.gtr.values < flashers.gtr.values[:,np.newaxis] + 200e3),axis=0)]
def muon_follower_cut(ev):
"""
Cuts all events 200 microseconds after a muon.
"""
muons = ev[ev.dc & DC_MUON != 0]
return ev[~np.any((ev.gtr.values > muons.gtr.values[:,np.newaxis]) & \
(ev.gtr.values < muons.gtr.values[:,np.newaxis] + 200e3),axis=0)]
def michel_cut(ev):
"""
Looks for Michel electrons after muons.
"""
prompt_plus_muons = ev[ev.prompt | ((ev.dc & DC_MUON) != 0)]
# Michel electrons and neutrons can be any event which is not a prompt
# event
follower = ev[~ev.prompt]
# require Michel events to pass more of the SNO data cleaning cuts
michel = follower[follower.dc & (DC_JUNK | DC_CRATE_ISOTROPY | DC_QVNHIT | DC_FLASHER | DC_NECK | DC_ESUM | DC_OWL | DC_OWL_TRIGGER | DC_FTS) == 0]
michel = michel[michel.nhit >= 100]
# Accept events which had a muon more than 800 nanoseconds but less than 20
# microseconds before them. The 800 nanoseconds cut comes from Richie's
# thesis. He also mentions that the In Time Channel Spread Cut is very
# effective at cutting electron events caused by muons, so I should
# implement that.
#
# Note: We currently don't look across run boundaries. This should be a
# *very* small effect, and the logic to do so would be very complicated
# since I would have to deal with 50 MHz clock rollovers, etc.
if prompt_plus_muons.size and michel.size:
mask = (michel.gtr.values > prompt_plus_muons.gtr.values[:,np.newaxis] + 800) & \
(michel.gtr.values < prompt_plus_muons.gtr.values[:,np.newaxis] + 20e3)
michel = michel.iloc[np.any(mask,axis=0)]
michel['muon_gtid'] = pd.Series(prompt_plus_muons['gtid'].iloc[np.argmax(mask[:,np.any(mask,axis=0)],axis=0)].values,
index=michel.index.values,
dtype=np.int32)
return michel
else:
# Return an empty slice since we need it to have the same datatype as
# the other dataframes
michel = ev[:0]
michel['muon_gtid'] = -1
return michel
def atmospheric_events(ev):
"""
Tags atmospheric events which have a neutron follower.
"""
prompt = ev[ev.prompt]
# Michel electrons and neutrons can be any event which is not a prompt
# event
follower = ev[~ev.prompt]
ev['atm'] = np.zeros(len(ev),dtype=np.bool)
if prompt.size and follower.size:
# neutron followers have to obey stricter set of data cleaning cuts
neutron = follower[follower.dc & (DC_JUNK | DC_CRATE_ISOTROPY | DC_QVNHIT | DC_FLASHER | DC_NECK | DC_ESUM | DC_OWL | DC_OWL_TRIGGER | DC_FTS) == 0]
neutron = neutron[~np.isnan(neutron.ftp_x) & ~np.isnan(neutron.rsp_energy)]
# FIXME: What should the radius cut be here? AV? (r/r_psup)^3 < 0.9?
neutron = neutron[neutron.ftp_r < AV_RADIUS]
neutron = neutron[neutron.rsp_energy > 4.0]
# neutron events accepted after 20 microseconds and before 250 ms (50 ms during salt)
ev.loc[ev.prompt,'atm'] = np.any((neutron.gtr.values > prompt.gtr.values[:,np.newaxis] + 20e3) & \
(neutron.gtr.values < prompt.gtr.values[:,np.newaxis] + 250e6),axis=1)
return ev
def gtid_sort(ev, first_gtid):
"""
Adds 0x1000000 to the gtid_sort column for all gtids before the first gtid
in a run, which should be passed as a dictionary. This column can then be
used to sort the events sequentially.
This function should be passed to ev.groupby('run').apply(). We use this
idiom instead of just looping over the groupby results since groupby()
makes a copy of the dataframe, i.e.
for run, ev_run in ev.groupby('run'):
ev_run.loc[ev_run.gtid < first_gtid[run],'gtid_sort'] += 0x1000000
would produce a SettingWithCopyWarning, so instead we use:
ev = ev.groupby('run',as_index=False).apply(gtid_sort,first_gtid=first_gtid)
which doesn't have this problem.
"""
# see https://stackoverflow.com/questions/32460593/including-the-group-name-in-the-apply-function-pandas-python
run = ev.name
if run not in first_gtid:
print_warning("No RHDR bank for run %i! Assuming first event is the first GTID." % run)
first_gtid[run] = ev.gtid.iloc[0]
ev.loc[ev.gtid < first_gtid[run],'gtid_sort'] += 0x1000000
return ev
def prompt_event(ev):
ev['prompt'] = (ev.nhit >= 100)
ev.loc[ev.prompt,'prompt'] &= np.concatenate(([True],np.diff(ev[ev.prompt].gtr.values) > 250e6))
return ev
# Taken from https://raw.githubusercontent.com/mwaskom/seaborn/c73055b2a9d9830c6fbbace07127c370389d04dd/seaborn/utils.py
def despine(fig=None, ax=None, top=True, right=True, left=False,
bottom=False, offset=None, trim=False):
"""Remove the top and right spines from plot(s).
fig : matplotlib figure, optional
Figure to despine all axes of, default uses current figure.
ax : matplotlib axes, optional
Specific axes object to despine.
top, right, left, bottom : boolean, optional
If True, remove that spine.
offset : int or dict, optional
Absolute distance, in points, spines should be moved away
from the axes (negative values move spines inward). A single value
applies to all spines; a dict can be used to set offset values per
side.
trim : bool, optional
If True, limit spines to the smallest and largest major tick
on each non-despined axis.
Returns
-------
None
"""
# Get references to the axes we want
if fig is None and ax is None:
axes = plt.gcf().axes
elif fig is not None:
axes = fig.axes
elif ax is not None:
axes = [ax]
for ax_i in axes:
for side in ["top", "right", "left", "bottom"]:
# Toggle the spine objects
is_visible = not locals()[side]
ax_i.spines[side].set_visible(is_visible)
if offset is not None and is_visible:
try:
val = offset.get(side, 0)
except AttributeError:
val = offset
_set_spine_position(ax_i.spines[side], ('outward', val))
# Potentially move the ticks
if left and not right:
maj_on = any(
t.tick1line.get_visible()
for t in ax_i.yaxis.majorTicks
)
min_on = any(
t.tick1line.get_visible()
for t in ax_i.yaxis.minorTicks
)
ax_i.yaxis.set_ticks_position("right")
for t in ax_i.yaxis.majorTicks:
t.tick2line.set_visible(maj_on)
for t in ax_i.yaxis.minorTicks:
t.tick2line.set_visible(min_on)
if bottom and not top:
maj_on = any(
t.tick1line.get_visible()
for t in ax_i.xaxis.majorTicks
)
min_on = any(
t.tick1line.get_visible()
for t in ax_i.xaxis.minorTicks
)
ax_i.xaxis.set_ticks_position("top")
for t in ax_i.xaxis.majorTicks:
t.tick2line.set_visible(maj_on)
for t in ax_i.xaxis.minorTicks:
t.tick2line.set_visible(min_on)
if trim:
# clip off the parts of the spines that extend past major ticks
xticks = ax_i.get_xticks()
if xticks.size:
firsttick = np.compress(xticks >= min(ax_i.get_xlim()),
xticks)[0]
lasttick = np.compress(xticks <= max(ax_i.get_xlim()),
xticks)[-1]
ax_i.spines['bottom'].set_bounds(firsttick, lasttick)
ax_i.spines['top'].set_bounds(firsttick, lasttick)
newticks = xticks.compress(xticks <= lasttick)
newticks = newticks.compress(newticks >= firsttick)
ax_i.set_xticks(newticks)
yticks = ax_i.get_yticks()
if yticks.size:
firsttick = np.compress(yticks >= min(ax_i.get_ylim()),
yticks)[0]
lasttick = np.compress(yticks <= max(ax_i.get_ylim()),
yticks)[-1]
ax_i.spines['left'].set_bounds(firsttick, lasttick)
ax_i.spines['right'].set_bounds(firsttick, lasttick)
newticks = yticks.compress(yticks <= lasttick)
newticks = newticks.compress(newticks >= firsttick)
ax_i.set_yticks(newticks)
def plot_corner_plot(ev, title, save=None):
variables = ['r_psup','psi','z','udotr']
labels = [r'$(r/r_\mathrm{PSUP})^3$',r'$\psi$','z',r'$\vec{u}\cdot\vec{r}$']
limits = [(0,1),(0,10),(-840,840),(-1,1)]
cuts = [0.9,6,0,-0.5]
ev = ev.dropna(subset=variables)
fig = plt.figure(figsize=(FIGSIZE[0],FIGSIZE[0]))
despine(fig,trim=True)
for i in range(len(variables)):
for j in range(len(variables)):
if j > i:
continue
ax = plt.subplot(len(variables),len(variables),i*len(variables)+j+1)
if i == j:
plt.hist(ev[variables[i]],bins=np.linspace(limits[i][0],limits[i][1],100),histtype='step')
plt.gca().set_xlim(limits[i])
else:
plt.scatter(ev[variables[j]],ev[variables[i]],s=0.5)
plt.gca().set_xlim(limits[j])
plt.gca().set_ylim(limits[i])
n = len(ev)
if n:
p_i_lo = np.count_nonzero(ev[variables[i]] < cuts[i])/n
p_j_lo = np.count_nonzero(ev[variables[j]] < cuts[j])/n
p_lolo = p_i_lo*p_j_lo
p_lohi = p_i_lo*(1-p_j_lo)
p_hilo = (1-p_i_lo)*p_j_lo
p_hihi = (1-p_i_lo)*(1-p_j_lo)
n_lolo = np.count_nonzero((ev[variables[i]] < cuts[i]) & (ev[variables[j]] < cuts[j]))
n_lohi = np.count_nonzero((ev[variables[i]] < cuts[i]) & (ev[variables[j]] >= cuts[j]))
n_hilo = np.count_nonzero((ev[variables[i]] >= cuts[i]) & (ev[variables[j]] < cuts[j]))
n_hihi = np.count_nonzero((ev[variables[i]] >= cuts[i]) & (ev[variables[j]] >= cuts[j]))
observed = np.array([n_lolo,n_lohi,n_hilo,n_hihi])
expected = n*np.array([p_lolo,p_lohi,p_hilo,p_hihi])
psi = -poisson.logpmf(observed,expected).sum() + poisson.logpmf(observed,observed).sum()
psi /= np.std(-poisson.logpmf(np.random.poisson(observed,size=(10000,4)),observed).sum(axis=1) + poisson.logpmf(observed,observed).sum())
plt.title(r"$\psi = %.1f$" % psi)
if i == len(variables) - 1:
plt.xlabel(labels[j])
else:
plt.setp(ax.get_xticklabels(),visible=False)
if j == 0:
plt.ylabel(labels[i])
else:
plt.setp(ax.get_yticklabels(),visible=False)
plt.axvline(cuts[j],color='k',ls='--',alpha=0.5)
if i != j:
plt.axhline(cuts[i],color='k',ls='--',alpha=0.5)
plt.tight_layout()
if save:
plt.savefig(save + ".pdf")
plt.savefig(save + ".eps")
plt.suptitle(title)
def intersect_sphere(pos, dir, R):
"""
Compute the first intersection of a ray starting at `pos` with direction
`dir` and a sphere centered at the origin with radius `R`. The distance to
the intersection is returned.
Example:
pos = np.array([0,0,0])
dir = np.array([1,0,0])
l = intersect_sphere(pos,dir,PSUP_RADIUS):
if l is not None:
hit = pos + l*dir
print("ray intersects sphere at %.2f %.2f %.2f", hit[0], hit[1], hit[2])
else:
print("ray didn't intersect sphere")
"""
b = 2*np.dot(dir,pos)
c = np.dot(pos,pos) - R*R
if b*b - 4*c <= 0:
# Ray doesn't intersect the sphere.
return None
# First, check the shorter solution.
l = (-b - np.sqrt(b*b - 4*c))/2
# If the shorter solution is less than 0, check the second solution.
if l < 0:
l = (-b + np.sqrt(b*b - 4*c))/2
# If the distance is still negative, we didn't intersect the sphere.
if l < 0:
return None
return l
def get_dx(row):
pos = np.array([row.x,row.y,row.z])
dir = np.array([np.sin(row.theta1)*np.cos(row.phi1),
np.sin(row.theta1)*np.sin(row.phi1),
np.cos(row.theta1)])
l = intersect_sphere(pos,-dir,PSUP_RADIUS)
if l is not None:
pos -= dir*l
michel_pos = np.array([row.x_michel,row.y_michel,row.z_michel])
return np.linalg.norm(michel_pos-pos)
else:
return 0
def dx_to_energy(dx):
lines = []
with open("../src/muE_water_liquid.txt") as f:
for i, line in enumerate(f):
if i < 10:
continue
if 'Minimum ionization' in line:
continue
if 'Muon critical energy' in line:
continue
lines.append(line)
data = np.genfromtxt(lines)
return np.interp(dx,data[:,8],data[:,0])
def iqr_std_err(x):
"""
Returns the approximate standard deviation assuming the central part of the
distribution is gaussian.
"""
x = x.dropna()
n = len(x)
if n == 0:
return np.nan
# see https://stats.stackexchange.com/questions/110902/error-on-interquartile-range
std = iqr(x.values)/1.3489795
return 1.573*std/np.sqrt(n)
def iqr_std(x):
"""
Returns the approximate standard deviation assuming the central part of the
distribution is gaussian.
"""
x = x.dropna()
n = len(x)
if n == 0:
return np.nan
return iqr(x.values)/1.3489795
def quantile_error(x,q):
"""
Returns the standard error for the qth quantile of `x`. The error is
computed using the Maritz-Jarrett method described here:
https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/quantse.htm.
"""
x = np.sort(x)
n = len(x)
m = int(q*n+0.5)
A = m - 1
B = n - m
i = np.arange(1,len(x)+1)
w = beta.cdf(i/n,A,B) - beta.cdf((i-1)/n,A,B)
return np.sqrt(np.sum(w*x**2)-np.sum(w*x)**2)
def q90_err(x):
"""
Returns the error on the 90th percentile for all the non NaN values in a
Series `x`.
"""
x = x.dropna()
n = len(x)
if n == 0:
return np.nan
return quantile_error(x.values,0.9)
def q90(x):
"""
Returns the 90th percentile for all the non NaN values in a Series `x`.
"""
x = x.dropna()
n = len(x)
if n == 0:
return np.nan
return np.percentile(x.values,90.0)
def median(x):
"""
Returns the median for all the non NaN values in a Series `x`.
"""
x = x.dropna()
n = len(x)
if n == 0:
return np.nan
return np.median(x.values)
def median_err(x):
"""
Returns the approximate error on the median for all the non NaN values in a
Series `x`. The error on the median is approximated assuming the central
part of the distribution is gaussian.
"""
x = x.dropna()
n = len(x)
if n == 0:
return np.nan
# First we estimate the standard deviation using the interquartile range.
# Here we are essentially assuming the central part of the distribution is
# gaussian.
std = iqr(x.values)/1.3489795
median = np.median(x.values)
# Now we estimate the error on the median for a gaussian
# See https://stats.stackexchange.com/questions/45124/central-limit-theorem-for-sample-medians.
return 1/(2*np.sqrt(n)*norm.pdf(median,median,std))
def std_err(x):
x = x.dropna()
mean = np.mean(x)
std = np.std(x)
n = len(x)
if n == 0:
return np.nan
elif n == 1:
return 0.0
u4 = np.mean((x-mean)**4)
error = np.sqrt((u4-(n-3)*std**4/(n-1))/n)/(2*std)
return error
# Fermi constant
GF = 1.16637887e-5 # 1/MeV^2
ELECTRON_MASS = 0.5109989461 # MeV
MUON_MASS = 105.6583745 # MeV
PROTON_MASS = 938.272081 # MeV
FINE_STRUCTURE_CONSTANT = 7.297352566417e-3
def f(x):
y = (5/(3*x**2) + 16*x/3 + 4/x + (12-8*x)*np.log(1/x-1) - 8)*np.log(MUON_MASS/ELECTRON_MASS)
y += (6-4*x)*(2*spence(x) - 2*np.log(x)**2 + np.log(x) + np.log(1-x)*(3*np.log(x)-1/x-1) - np.pi**2/3-2)
y += (1-x)*(34*x**2+(5-34*x**2+17*x)*np.log(x) - 22*x)/(3*x**2)
y += 6*(1-x)*np.log(x)
return y
def michel_spectrum(T):
"""
Michel electron energy spectrum for a free muon. `T` should be the kinetic
energy of the electron or positron in MeV.
Note: The result is not normalized.
From https://arxiv.org/abs/1406.3575.
"""
E = T + ELECTRON_MASS
x = 2*E/MUON_MASS
mask = (x > 0) & (x < 1)
y = np.zeros_like(x,dtype=np.double)
y[mask] = GF**2*MUON_MASS**5*x[mask]**2*(6-4*x[mask]+FINE_STRUCTURE_CONSTANT*f(x[mask])/np.pi)/(192*np.pi**3)
y *= 2*MUON_MASS
return y
if __name__ == '__main__':
import argparse
import matplotlib.pyplot as plt
import numpy as np
import pandas as pd
import sys
import h5py
parser = argparse.ArgumentParser("plot fit results")
parser.add_argument("filenames", nargs='+', help="input files")
parser.add_argument("--dc", action='store_true', default=False, help="plot corner plots for backgrounds")
parser.add_argument("--save", action='store_true', default=False, help="save corner plots for backgrounds")
args = parser.parse_args()
ev = pd.concat([pd.read_hdf(filename, "ev") for filename in args.filenames],ignore_index=True)
fits = pd.concat([pd.read_hdf(filename, "fits") for filename in args.filenames],ignore_index=True)
rhdr = pd.concat([pd.read_hdf(filename, "rhdr") for filename in args.filenames],ignore_index=True)
first_gtid = rhdr.set_index('run').to_dict()['first_gtid']
# First, remove junk events since orphans won't have a 50 MHz clock and so
# could screw up the 50 MHz clock unwrapping
ev = ev[ev.dc & DC_JUNK == 0]
# We need the events to be in time order here in order to calculate the
# delta t between events. It's not obvious exactly how to do this. You
# could sort by GTID, but that wraps around. Similarly we can't sort by the
# 50 MHz clock because it also wraps around. Finally, I'm hesitant to sort
# by the 10 MHz clock since it can be unreliable.
#
# Update: Phil proposed a clever way to get the events in order using the
# GTID:
#
# > The GTID rollover should be easy to handle because there should never
# > be two identical GTID's in a run. So if you order the events by GTID,
# > you can assume that events with GTID's that come logically before the
# > first GTID in the run must have occurred after the other events.
#
# Therefore, we can just add 0x1000000 to all GTIDs before the first GTID
# in the event and sort on that. We get the first GTID from the RHDR bank.
ev['gtid_sort'] = ev['gtid'].copy()
ev = ev.groupby('run',as_index=False).apply(gtid_sort,first_gtid=first_gtid).reset_index(level=0,drop=True)
ev = ev.sort_values(by=['run','gtid_sort'],kind='mergesort')
for run, ev_run in ev.groupby('run'):
# Warn about 50 MHz clock jumps since they could indicate that the
# events aren't in order.
dt = np.diff(ev_run.gtr)
if np.count_nonzero((np.abs(dt) > 1e9) & (dt > -0x7ffffffffff*20.0/2)):
print_warning("Warning: %i 50 MHz clock jumps in run %i. Are the events in order?" % \
(np.count_nonzero((np.abs(dt) > 1e9) & (dt > -0x7ffffffffff*20.0/2)),run))
# unwrap the 50 MHz clock within each run
ev.gtr = ev.groupby(['run'],group_keys=False)['gtr'].transform(unwrap_50_mhz_clock)
for run, ev_run in ev.groupby('run'):
# Warn about GTID jumps since we could be missing a potential flasher
# and/or breakdown, and we need all the events in order to do a
# retrigger cut
if np.count_nonzero(np.diff(ev_run.gtid) != 1):
print_warning("Warning: %i GTID jumps in run %i" % (np.count_nonzero(np.diff(ev_run.gtid) != 1),run))
# calculate the time difference between each event and the previous event
# so we can tag retrigger events
ev['dt'] = ev.groupby(['run'],group_keys=False)['gtr'].transform(lambda x: np.concatenate(([1e9],np.diff(x.values))))
# This is a bit of a hack. It appears that many times the fit will
# actually do much better by including a very low energy electron or
# muon. I believe the reason for this is that of course my likelihood
# function is not perfect (for example, I don't include the correct
# angular distribution for Rayleigh scattered light), and so the fitter
# often wants to add a very low energy electron or muon to fix things.
#
# Ideally I would fix the likelihood function, but for now we just
# discard any fit results which have a very low energy electron or
# muon.
#
# FIXME: Test this since query() is new to pandas
fits = fits.query('not (n > 1 and ((id1 == 20 and energy1 < 20) or (id2 == 20 and energy2 < 20) or (id3 == 20 and energy3 < 20)))')
fits = fits.query('not (n > 1 and ((id2 == 22 and energy1 < 200) or (id2 == 22 and energy2 < 200) or (id3 == 22 and energy3 < 200)))')
# Calculate the approximate Ockham factor.
# See Chapter 20 in "Probability Theory: The Logic of Science" by Jaynes
#
# Note: This is a really approximate form by assuming that the shape of
# the likelihood space is equal to the average uncertainty in the
# different parameters.
fits['w'] = fits['n']*np.log(0.1*0.001) + np.log(fits['energy1']) + fits['n']*np.log(1e-4/(4*np.pi))
# Apply a fudge factor to the Ockham factor of 100 for each extra particle
# FIXME: I chose 100 a while ago but didn't really investigate what the
# optimal value was or exactly why it was needed. Should do this.
fits['w'] -= fits['n']*100
# Note: we index on the left hand site with loc to avoid a copy error
#
# See https://www.dataquest.io/blog/settingwithcopywarning/
fits.loc[fits['n'] > 1, 'w'] += np.log(fits[fits['n'] > 1]['energy2'])
fits.loc[fits['n'] > 2, 'w'] += np.log(fits[fits['n'] > 2]['energy3'])
fits['fmin'] = fits['fmin'] - fits['w']
# See https://stackoverflow.com/questions/11976503/how-to-keep-index-when-using-pandas-merge
# for how to properly divide the psi column by nhit_cal which is in the ev
# dataframe before we actually merge
fits['psi'] /= fits.reset_index().merge(ev,on=['run','gtid']).set_index('index')['nhit_cal']
fits.loc[fits['n'] == 1,'ke'] = fits['energy1']
fits.loc[fits['n'] == 2,'ke'] = fits['energy1'] + fits['energy2']
fits.loc[fits['n'] == 3,'ke'] = fits['energy1'] + fits['energy2'] + fits['energy3']
fits['id'] = fits['id1']
fits.loc[fits['n'] == 2, 'id'] = fits['id1']*100 + fits['id2']
fits.loc[fits['n'] == 3, 'id'] = fits['id1']*10000 + fits['id2']*100 + fits['id3']
fits['theta'] = fits['theta1']
fits['r'] = np.sqrt(fits.x**2 + fits.y**2 + fits.z**2)
fits['r_psup'] = (fits['r']/PSUP_RADIUS)**3
ev['ftp_r'] = np.sqrt(ev.ftp_x**2 + ev.ftp_y**2 + ev.ftp_z**2)
ev['ftp_r_psup'] = (ev['ftp_r']/PSUP_RADIUS)**3
print("number of events = %i" % len(ev))
# Now, select prompt events.
#
# We define a prompt event here as any event with an NHIT > 100 and whose
# previous > 100 nhit event was more than 250 ms ago
#
# Note: It's important we do this *before* applying the data cleaning cuts
# since otherwise we may have a prompt event identified only after the
# cuts.
#
# For example, suppose there was a breakdown and for whatever reason
# the *second* event after the breakdown didn't get tagged correctly. If we
# apply the data cleaning cuts first and then tag prompt events then this
# event will get tagged as a prompt event.
ev = ev.groupby('run',group_keys=False).apply(prompt_event)
print("number of events after prompt nhit cut = %i" % np.count_nonzero(ev.prompt))
# flasher follower cut
ev = ev.groupby('run',group_keys=False).apply(flasher_follower_cut)
# breakdown follower cut
ev = ev.groupby('run',group_keys=False).apply(breakdown_follower_cut)
# retrigger cut
ev = ev.groupby('run',group_keys=False).apply(retrigger_cut)
if args.save:
# default \textwidth for a fullpage article in Latex is 16.50764 cm.
# You can figure this out by compiling the following TeX document:
#
# \documentclass{article}
# \usepackage{fullpage}
# \usepackage{layouts}
# \begin{document}
# textwidth in cm: \printinunitsof{cm}\prntlen{\textwidth}
# \end{document}
width = 16.50764
width /= 2.54 # cm -> inches
# According to this page:
# http://www-personal.umich.edu/~jpboyd/eng403_chap2_tuftegospel.pdf,
# Tufte suggests an aspect ratio of 1.5 - 1.6.
height = width/1.5
FIGSIZE = (width,height)
import matplotlib.pyplot as plt
font = {'family':'serif', 'serif': ['computer modern roman']}
plt.rc('font',**font)
plt.rc('text', usetex=True)
else:
# on retina screens, the default plots are way too small
# by using Qt5 and setting QT_AUTO_SCREEN_SCALE_FACTOR=1
# Qt5 will scale everything using the dpi in ~/.Xresources
import matplotlib
matplotlib.use("Qt5Agg")
import matplotlib.pyplot as plt
# Default figure size. Currently set to my monitor width and height so that
# things are properly formatted
FIGSIZE = (13.78,7.48)
# Make the defalt font bigger
plt.rc('font', size=22)
if args.dc:
ev = ev[ev.prompt]
ev.set_index(['run','gtid'])
ev = pd.merge(fits,ev,how='inner',on=['run','gtid'])
ev_single_particle = ev[(ev.id2 == 0) & (ev.id3 == 0)]
ev_single_particle = ev_single_particle.sort_values('fmin').groupby(['run','gtid']).nth(0)
ev = ev.sort_values('fmin').groupby(['run','gtid']).nth(0)
ev['cos_theta'] = np.cos(ev['theta1'])
ev['udotr'] = np.sin(ev_single_particle.theta1)*np.cos(ev_single_particle.phi1)*ev_single_particle.x + \
np.sin(ev_single_particle.theta1)*np.sin(ev_single_particle.phi1)*ev_single_particle.y + \
np.cos(ev_single_particle.theta1)*ev_single_particle.z
ev['udotr'] /= ev.r
flashers = ev[ev.dc & (DC_JUNK | DC_CRATE_ISOTROPY | DC_QVNHIT | DC_FLASHER | DC_NECK | DC_ITC | DC_BREAKDOWN) == DC_FLASHER]
muon = ev[ev.dc & (DC_JUNK | DC_CRATE_ISOTROPY | DC_QVNHIT | DC_FLASHER | DC_NECK | DC_ITC | DC_BREAKDOWN | DC_MUON) == DC_MUON]
neck = ev[(ev.dc & (DC_JUNK | DC_CRATE_ISOTROPY | DC_QVNHIT | DC_NECK)) == DC_NECK]
noise = ev[(ev.dc & (DC_ITC | DC_QVNHIT | DC_JUNK | DC_CRATE_ISOTROPY)) != 0]
breakdown = ev[ev.nhit >= 1000]
breakdown = breakdown[breakdown.dc & (DC_JUNK | DC_CRATE_ISOTROPY | DC_QVNHIT | DC_NECK | DC_ITC) == 0]
breakdown = breakdown[breakdown.dc & (DC_FLASHER | DC_BREAKDOWN) != 0]
signal = ev[ev.dc & (DC_JUNK | DC_CRATE_ISOTROPY | DC_QVNHIT | DC_FLASHER | DC_NECK | DC_ITC | DC_BREAKDOWN | DC_MUON) == 0]
with pd.option_context('display.max_rows', None, 'display.max_columns', None):
print("Noise events")
print(noise[['psi','x','y','z','id1','id2']])
print("Muons")
print(muon[['psi','r','id1','id2','id3','energy1','energy2','energy3']])
print("Neck")
print(neck[neck.psi < 6][['psi','r','id1','cos_theta']])
print("Flashers")
print(flashers[flashers.udotr > 0])
print("Signal")
print(signal)
# save as PDF b/c EPS doesn't support alpha values
if args.save:
plot_corner_plot(breakdown,"Breakdowns",save="breakdown_corner_plot")
plot_corner_plot(muon,"Muons",save="muon_corner_plot")
plot_corner_plot(flashers,"Flashers",save="flashers_corner_plot")
plot_corner_plot(neck,"Neck",save="neck_corner_plot")
plot_corner_plot(noise,"Noise",save="noise_corner_plot")
plot_corner_plot(signal,"Signal",save="signal_corner_plot")
else:
plot_corner_plot(breakdown,"Breakdowns")
plot_corner_plot(muon,"Muons")
plot_corner_plot(flashers,"Flashers")
plot_corner_plot(neck,"Neck")
plot_corner_plot(noise,"Noise")
plot_corner_plot(signal,"Signal")
fig = plt.figure(figsize=FIGSIZE)
plot_hist2(flashers)
despine(fig,trim=True)
plt.suptitle("Flashers")
fig = plt.figure(figsize=FIGSIZE)
plot_hist2(muon,muons=True)
despine(fig,trim=True)
plt.suptitle("Muons")
plt.show()
sys.exit(0)
# First, do basic data cleaning which is done for all events.
ev = ev[ev.dc & (DC_JUNK | DC_CRATE_ISOTROPY | DC_QVNHIT | DC_FLASHER | DC_NECK | DC_ITC | DC_BREAKDOWN) == 0]
# 00-orphan cut
ev = ev[(ev.gtid & 0xff) != 0]
print("number of events after data cleaning = %i" % np.count_nonzero(ev.prompt))
# Now, we select events tagged by the muon tag which should tag only
# external muons. We keep the sample of muons since it's needed later to
# identify Michel electrons and to apply the muon follower cut
muons = ev[(ev.dc & DC_MUON) != 0]
print("number of muons = %i" % len(muons))
# Try to identify Michel electrons. Currently, the event selection is based
# on Richie's thesis. Here, we do the following:
#
# 1. Apply more data cleaning cuts to potential Michel electrons
# 2. Nhit >= 100
# 3. It must be > 800 ns and less than 20 microseconds from a prompt event
# or a muon
michel = ev.groupby('run',group_keys=False).apply(michel_cut)
print("number of michel events = %i" % len(michel))
# Tag atmospheric events.
#
# Note: We don't cut atmospheric events or muons yet because we still need
# all the events in order to apply the muon follower cut.
ev = ev.groupby('run',group_keys=False).apply(atmospheric_events)
print("number of events after neutron follower cut = %i" % np.count_nonzero(ev.prompt & (~ev.atm)))
# remove events 200 microseconds after a muon
ev = ev.groupby('run',group_keys=False).apply(muon_follower_cut)
# Get rid of muon events in our main event sample
ev = ev[(ev.dc & DC_MUON) == 0]
prompt = ev[ev.prompt & ~ev.atm]
atm = ev[ev.atm]
print("number of events after muon cut = %i" % len(prompt))
# Check to see if there are any events with missing fit information
atm_ra = atm[['run','gtid']].to_records(index=False)
muons_ra = muons[['run','gtid']].to_records(index=False)
prompt_ra = prompt[['run','gtid']].to_records(index=False)
michel_ra = michel[['run','gtid']].to_records(index=False)
fits_ra = fits[['run','gtid']].to_records(index=False)
if len(atm_ra) and np.count_nonzero(~np.isin(atm_ra,fits_ra)):
print_warning("skipping %i atmospheric events because they are missing fit information!" % np.count_nonzero(~np.isin(atm_ra,fits_ra)))
if len(muons_ra) and np.count_nonzero(~np.isin(muons_ra,fits_ra)):
print_warning("skipping %i muon events because they are missing fit information!" % np.count_nonzero(~np.isin(muons_ra,fits_ra)))
if len(prompt_ra) and np.count_nonzero(~np.isin(prompt_ra,fits_ra)):
print_warning("skipping %i signal events because they are missing fit information!" % np.count_nonzero(~np.isin(prompt_ra,fits_ra)))
if len(michel_ra) and np.count_nonzero(~np.isin(michel_ra,fits_ra)):
print_warning("skipping %i Michel events because they are missing fit information!" % np.count_nonzero(~np.isin(michel_ra,fits_ra)))
# Now, we merge the event info with the fitter info.
#
# Note: This means that the dataframe now contains multiple rows for each
# event, one for each fit hypothesis.
atm = pd.merge(fits,atm,how='inner',on=['run','gtid'])
muons = pd.merge(fits,muons,how='inner',on=['run','gtid'])
michel = pd.merge(fits,michel,how='inner',on=['run','gtid'])
prompt = pd.merge(fits,prompt,how='inner',on=['run','gtid'])
# get rid of events which don't have a fit
nan = np.isnan(prompt.fmin.values)
if np.count_nonzero(nan):
print_warning("skipping %i signal events because the negative log likelihood is nan!" % len(prompt[nan].groupby(['run','gtid'])))
prompt = prompt[~nan]
nan_atm = np.isnan(atm.fmin.values)
if np.count_nonzero(nan_atm):
print_warning("skipping %i atmospheric events because the negative log likelihood is nan!" % len(atm[nan_atm].groupby(['run','gtid'])))
atm = atm[~nan_atm]
nan_muon = np.isnan(muons.fmin.values)
if np.count_nonzero(nan_muon):
print_warning("skipping %i muons because the negative log likelihood is nan!" % len(muons[nan_muon].groupby(['run','gtid'])))
muons = muons[~nan_muon]
nan_michel = np.isnan(michel.fmin.values)
if np.count_nonzero(nan_michel):
print_warning("skipping %i michel electron events because the negative log likelihood is nan!" % len(michel[nan_michel].groupby(['run','gtid'])))
michel = michel[~nan_michel]
# get the best fit
prompt = prompt.sort_values('fmin').groupby(['run','gtid']).nth(0)
atm = atm.sort_values('fmin').groupby(['run','gtid']).nth(0)
michel_best_fit = michel.sort_values('fmin').groupby(['run','gtid']).nth(0)
muon_best_fit = muons.sort_values('fmin').groupby(['run','gtid']).nth(0)
muons = muons[muons.id == 22]
# require r < 6 meters
prompt = prompt[prompt.r_psup < 0.9]
atm = atm[atm.r_psup < 0.9]
print("number of events after radius cut = %i" % len(prompt))
# Note: Need to design and apply a psi based cut here
fig = plt.figure(figsize=FIGSIZE)
plot_hist2(prompt)
despine(fig,trim=True)
if args.save:
plt.savefig("prompt.pdf")
plt.savefig("prompt.eps")
else:
plt.suptitle("Without Neutron Follower")
fig = plt.figure(figsize=FIGSIZE)
plot_hist2(atm)
despine(fig,trim=True)
if args.save:
plt.savefig("atm.pdf")
plt.savefig("atm.eps")
else:
plt.suptitle("With Neutron Follower")
fig = plt.figure(figsize=FIGSIZE)
plot_hist2(michel_best_fit)
despine(fig,trim=True)
if args.save:
plt.savefig("michel_electrons.pdf")
plt.savefig("michel_electrons.eps")
else:
plt.suptitle("Michel Electrons")
fig = plt.figure(figsize=FIGSIZE)
plot_hist2(muon_best_fit,muons=True)
despine(fig,trim=True)
if len(muon_best_fit):
plt.tight_layout()
if args.save:
plt.savefig("external_muons.pdf")
plt.savefig("external_muons.eps")
else:
plt.suptitle("External Muons")
# Plot the energy and angular distribution for external muons
fig = plt.figure(figsize=FIGSIZE)
plt.subplot(2,1,1)
plt.hist(muons.ke.values, bins=np.logspace(3,7,100), histtype='step')
plt.xlabel("Energy (MeV)")
plt.gca().set_xscale("log")
plt.subplot(2,1,2)
plt.hist(np.cos(muons.theta.values), bins=np.linspace(-1,1,100), histtype='step')
despine(fig,trim=True)
plt.xlabel(r"$\cos(\theta)$")
plt.tight_layout()
if args.save:
plt.savefig("muon_energy_cos_theta.pdf")
plt.savefig("muon_energy_cos_theta.eps")
else:
plt.suptitle("Muons")
# For the Michel energy plot, we only look at the single particle electron
# fit
michel = michel[michel.id == 20]
stopping_muons = pd.merge(muons,michel,left_on=['run','gtid'],right_on=['run','muon_gtid'],suffixes=('','_michel'))
if len(stopping_muons):
# project muon to PSUP
stopping_muons['dx'] = stopping_muons.apply(get_dx,axis=1)
# energy based on distance travelled
stopping_muons['T_dx'] = dx_to_energy(stopping_muons.dx)
stopping_muons['dT'] = stopping_muons['energy1'] - stopping_muons['T_dx']
fig = plt.figure(figsize=FIGSIZE)
plt.hist((stopping_muons['energy1']-stopping_muons['T_dx'])*100/stopping_muons['T_dx'], bins=np.linspace(-100,100,200), histtype='step')
despine(fig,trim=True)
plt.xlabel("Fractional energy difference (\%)")
plt.title("Fractional energy difference for Stopping Muons")
plt.tight_layout()
if args.save:
plt.savefig("stopping_muon_fractional_energy_difference.pdf")
plt.savefig("stopping_muon_fractional_energy_difference.eps")
else:
plt.title("Stopping Muon Fractional Energy Difference")
# 100 bins between 50 MeV and 10 GeV
bins = np.arange(50,10000,1000)
pd_bins = pd.cut(stopping_muons['energy1'],bins)
T = (bins[1:] + bins[:-1])/2
dT = stopping_muons.groupby(pd_bins)['dT'].agg(['mean','sem','std',std_err,median,median_err,iqr_std,iqr_std_err])
fig = plt.figure(figsize=FIGSIZE)
plt.errorbar(T,dT['median']*100/T,yerr=dT['median_err']*100/T)
despine(fig,trim=True)
plt.xlabel("Kinetic Energy (MeV)")
plt.ylabel(r"Energy bias (\%)")
plt.tight_layout()
if args.save:
plt.savefig("stopping_muon_energy_bias.pdf")
plt.savefig("stopping_muon_energy_bias.eps")
else:
plt.title("Stopping Muon Energy Bias")
fig = plt.figure(figsize=FIGSIZE)
plt.errorbar(T,dT['iqr_std']*100/T,yerr=dT['iqr_std_err']*100/T)
despine(fig,trim=True)
plt.xlabel("Kinetic Energy (MeV)")
plt.ylabel(r"Energy resolution (\%)")
plt.tight_layout()
if args.save:
plt.savefig("stopping_muon_energy_resolution.pdf")
plt.savefig("stopping_muon_energy_resolution.eps")
else:
plt.title("Stopping Muon Energy Resolution")
fig = plt.figure(figsize=FIGSIZE)
bins=np.linspace(0,100,100)
plt.hist(michel.ke.values, bins=bins, histtype='step', label="Dark Matter Fitter")
if michel.size:
plt.hist(michel[~np.isnan(michel.rsp_energy.values)].rsp_energy.values, bins=np.linspace(20,100,100), histtype='step',label="RSP")
x = np.linspace(0,100,1000)
y = michel_spectrum(x)
y /= np.trapz(y,x=x)
N = len(michel)
plt.plot(x, N*y*(bins[1]-bins[0]), ls='--', color='k', label="Michel Spectrum")
despine(fig,trim=True)
plt.xlabel("Energy (MeV)")
plt.tight_layout()
plt.legend()
if args.save:
plt.savefig("michel_electrons_ke.pdf")
plt.savefig("michel_electrons_ke.eps")
else:
plt.title("Michel Electrons")
plt.show()
|