1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
|
#!/usr/bin/env python
# Copyright (c) 2019, Anthony Latorre <tlatorre at uchicago>
#
# This program is free software: you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the Free
# Software Foundation, either version 3 of the License, or (at your option)
# any later version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
# more details.
#
# You should have received a copy of the GNU General Public License along with
# this program. If not, see <https://www.gnu.org/licenses/>.
"""
Script to plot reconstructed quantities for instrumentals. To run it just run:
$ ./plot-dc [list of fit results]
This will produce corner plots showing the distribution of the high level
variables used in the contamination analysis for all the different instrumental
backgrounds and external muons.
"""
from __future__ import print_function, division
import numpy as np
from scipy.stats import iqr, poisson
from matplotlib.lines import Line2D
from scipy.stats import iqr, norm, beta
from scipy.special import spence
from itertools import chain
particle_id = {20: 'e', 22: r'\mu'}
def plot_hist2(df, muons=False):
for id, df_id in sorted(df.groupby('id')):
if id == 20:
plt.subplot(2,3,1)
elif id == 22:
plt.subplot(2,3,2)
elif id == 2020:
plt.subplot(2,3,4)
elif id == 2022:
plt.subplot(2,3,5)
elif id == 2222:
plt.subplot(2,3,6)
if muons:
plt.hist(np.log10(df_id.ke.values/1000), bins=np.linspace(0,4.5,100), histtype='step')
plt.xlabel("log10(Energy (GeV))")
else:
bins = np.logspace(np.log10(20),np.log10(10e3),21)
plt.hist(df_id.ke.values, bins=bins, histtype='step')
plt.gca().set_xscale("log")
major = np.array([10,100,1000,10000])
minor = np.unique(list(chain(*list(range(i,i*10,i) for i in major[:-1]))))
minor = np.setdiff1d(minor,major)
plt.gca().set_xticks(major)
plt.gca().set_xticks(minor,minor=True)
plt.xlabel("Energy (MeV)")
plt.title('$' + ''.join([particle_id[int(''.join(x))] for x in grouper(str(id),2)]) + '$')
if len(df):
plt.tight_layout()
def plot_hist(df, muons=False):
for id, df_id in sorted(df.groupby('id')):
if id == 20:
plt.subplot(3,4,1)
elif id == 22:
plt.subplot(3,4,2)
elif id == 2020:
plt.subplot(3,4,5)
elif id == 2022:
plt.subplot(3,4,6)
elif id == 2222:
plt.subplot(3,4,7)
elif id == 202020:
plt.subplot(3,4,9)
elif id == 202022:
plt.subplot(3,4,10)
elif id == 202222:
plt.subplot(3,4,11)
elif id == 222222:
plt.subplot(3,4,12)
if muons:
plt.hist(np.log10(df_id.ke.values/1000), bins=np.linspace(0,4.5,100), histtype='step')
plt.xlabel("log10(Energy (GeV))")
else:
plt.hist(df_id.ke.values, bins=np.linspace(20,10e3,100), histtype='step')
plt.xlabel("Energy (MeV)")
plt.title(str(id))
if len(df):
plt.tight_layout()
if __name__ == '__main__':
import argparse
import numpy as np
import pandas as pd
import sys
import h5py
from sddm.plot_energy import *
from sddm.plot import *
from sddm import setup_matplotlib
parser = argparse.ArgumentParser("plot fit results")
parser.add_argument("filenames", nargs='+', help="input files")
parser.add_argument("--save", action='store_true', default=False, help="save corner plots for backgrounds")
parser.add_argument("--nhit-thresh", type=int, default=None, help="nhit threshold to apply to events before processing (should only be used for testing to speed things up)")
args = parser.parse_args()
setup_matplotlib(args.save)
import matplotlib.pyplot as plt
# Loop over runs to prevent using too much memory
evs = []
data_filenames = [filename for filename in args.filenames if 'SNO' in filename]
mc_filenames = [filename for filename in args.filenames if 'SNO' not in filename]
if len(data_filenames):
rhdr = pd.concat([read_hdf(filename, "rhdr").assign(filename=filename) for filename in data_filenames],ignore_index=True)
for run, df in rhdr.groupby('run'):
evs.append(get_events(df.filename.values, merge_fits=True, nhit_thresh=args.nhit_thresh))
if len(mc_filenames):
evs.append(get_events(mc_filenames, merge_fits=True, nhit_thresh=args.nhit_thresh))
ev = pd.concat(evs)
ev = ev[ev.prompt & ~np.isnan(ev.fmin)]
ev = ev[ev.ke > 20]
with pd.option_context('display.max_rows', None, 'display.max_columns', None):
print("Noise events")
print(ev[ev.noise][['psi','x','y','z','id1','id2']])
print("Muons")
print(ev[ev.muon][['psi','r','id1','id2','id3','energy1','energy2','energy3']])
print("Neck")
print(ev[ev.neck & ev.psi < 6][['psi','r','id1','cos_theta']])
print("Flashers")
print(ev[ev.flasher & ev.udotr > 0])
print("Signal")
print(ev[ev.signal])
# save as PDF b/c EPS doesn't support alpha values
if args.save:
plot_corner_plot(ev[ev.breakdown],"Breakdowns",save="breakdown_corner_plot")
plot_corner_plot(ev[ev.muon],"Muons",save="muon_corner_plot")
plot_corner_plot(ev[ev.flasher],"Flashers",save="flashers_corner_plot")
plot_corner_plot(ev[ev.neck],"Neck",save="neck_corner_plot")
plot_corner_plot(ev[ev.noise],"Noise",save="noise_corner_plot")
plot_corner_plot(ev[ev.signal],"Signal",save="signal_corner_plot")
else:
plot_corner_plot(ev[ev.breakdown],"Breakdowns")
plot_corner_plot(ev[ev.muon],"Muons")
plot_corner_plot(ev[ev.flasher],"Flashers")
plot_corner_plot(ev[ev.neck],"Neck")
plot_corner_plot(ev[ev.noise],"Noise")
plot_corner_plot(ev[ev.signal],"Signal")
fig = plt.figure()
plot_hist2(ev[ev.flasher])
despine(fig,trim=True)
plt.suptitle("Flashers")
fig = plt.figure()
plot_hist2(ev[ev.muon],muons=True)
despine(fig,trim=True)
plt.suptitle("Muons")
plt.show()
|