1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
|
#!/usr/bin/env python
"""
Script for plotting solar fluxes from
http://www-pnp.physics.ox.ac.uk/~barr/fluxfiles/0403i/index.html.
"""
from __future__ import print_function, division
import numpy as np
import os
from sddm.plot import despine
from sddm import splitext
# Data is in the form: Fluxes in bins of neutrino energy (equally spaced bins
# in logE with 10 bins per decade with the low edge of the first bin at 100
# MeV) and zenith angle (20 bins equally spaced in cos(zenith) with bin width
# 0.1), integrated over azimuth. Note logE means log to base e. Fluxes below 10
# GeV are from the 3D calculation.
# The files all have the same format. After the initial comment lines (starting
# with a # character), the files contain one line per bin. No smoothoing
# between bins has been done. The columns are:
#
# 1. Energy at centre of bin in GeV
# 2. Zenith files: Cos(zenith) at centre of bin
# Azimuth files: Azimuth at centre of bin (degrees)
# 3. Flux in dN/dlogE in /m**2/steradian/sec
# 4. MC Statistical error on the flux
# 5. Number of unweighted events entering the bin (not too useful)
if __name__ == '__main__':
import argparse
import matplotlib
import glob
parser = argparse.ArgumentParser("plot solar fluxes")
parser.add_argument("filenames", nargs='+', help="filenames of flux files")
parser.add_argument("--save", action="store_true", default=False, help="save plots")
args = parser.parse_args()
if args.save:
# default \textwidth for a fullpage article in Latex is 16.50764 cm.
# You can figure this out by compiling the following TeX document:
#
# \documentclass{article}
# \usepackage{fullpage}
# \usepackage{layouts}
# \begin{document}
# textwidth in cm: \printinunitsof{cm}\prntlen{\textwidth}
# \end{document}
width = 16.50764
width /= 2.54 # cm -> inches
# According to this page:
# http://www-personal.umich.edu/~jpboyd/eng403_chap2_tuftegospel.pdf,
# Tufte suggests an aspect ratio of 1.5 - 1.6.
height = width/1.5
FIGSIZE = (width,height)
import matplotlib.pyplot as plt
font = {'family':'serif', 'serif': ['computer modern roman']}
plt.rc('font',**font)
plt.rc('text', usetex=True)
else:
# on retina screens, the default plots are way too small
# by using Qt5 and setting QT_AUTO_SCREEN_SCALE_FACTOR=1
# Qt5 will scale everything using the dpi in ~/.Xresources
import matplotlib
matplotlib.use("Qt5Agg")
import matplotlib.pyplot as plt
# Default figure size. Currently set to my monitor width and height so that
# things are properly formatted
FIGSIZE = (13.78,7.48)
font = {'family':'serif', 'serif': ['computer modern roman']}
plt.rc('font',**font)
# Make the defalt font bigger
plt.rc('font', size=22)
plt.rc('text', usetex=True)
fig = plt.figure(figsize=FIGSIZE)
colors = plt.rcParams["axes.prop_cycle"].by_key()["color"]
linestyles = ['-','--']
def key(filename):
head, tail = os.path.split(filename)
k = 0
if tail.startswith('fmax'):
k += 1
if 'nue' in tail:
k += 10
elif 'nbe' in tail:
k += 20
elif 'num' in tail:
k += 30
elif 'nbm' in tail:
k += 40
elif 'nut' in tail:
k += 50
elif 'nbt' in tail:
k += 60
return k
for filename in sorted(args.filenames,key=key):
head, tail = os.path.split(filename)
print(filename)
data = np.genfromtxt(filename)
shape1 = len(np.unique(data[:,0]))
x = data[:,0].reshape((-1,shape1))
y = data[:,1].reshape((-1,shape1))
z = data[:,2].reshape((-1,shape1))
# Convert to MeV
x *= 1000.0
z /= 1000.0
zbins = np.linspace(-1,1,21)
dz = zbins[1] - zbins[0]
x = x[0]
# Integrate over cos(theta) and multiply by 2*pi to convert 3D flux to
# a total flux
y = np.sum(z*dz,axis=0)*2*np.pi
if 'sno_nue' in tail:
plt.plot(x,y,color=colors[0],linestyle=linestyles[0],label=r'$\nu_e$')
elif 'sno_nbe' in tail:
plt.plot(x,y,color=colors[0],linestyle=linestyles[1],label=r'$\overline{\nu}_e$')
elif 'sno_num' in tail:
plt.plot(x,y,color=colors[1],linestyle=linestyles[0],label=r'$\nu_\mu$')
elif 'sno_nbm' in tail:
plt.plot(x,y,color=colors[1],linestyle=linestyles[1],label=r'$\overline{\nu}_\mu$')
elif 'sno_nut' in tail:
plt.plot(x,y,color=colors[2],linestyle=linestyles[0],label=r'$\nu_\tau$')
elif 'sno_nbt' in tail:
plt.plot(x,y,color=colors[2],linestyle=linestyles[1],label=r'$\overline{\nu}_\tau$')
plt.gca().set_xscale("log")
plt.gca().set_yscale("log")
despine(fig,trim=True)
plt.xlabel("$E$ (MeV)")
plt.ylabel(r"$\mathrm{d}\Phi/\mathrm{d}E$ (1/$\mathrm{m}^2$/sec/MeV)")
plt.legend()
plt.tight_layout()
if args.save:
plt.savefig("irc01_atmospheric_flux.pdf")
plt.savefig("irc01_atmospheric_flux.eps")
plt.show()
|