1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
|
#!/usr/bin/env python
# Copyright (c) 2019, Anthony Latorre <tlatorre at uchicago>
#
# This program is free software: you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the Free
# Software Foundation, either version 3 of the License, or (at your option)
# any later version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
# more details.
#
# You should have received a copy of the GNU General Public License along with
# this program. If not, see <https://www.gnu.org/licenses/>.
"""
Script to do final dark matter search analysis. To run it just run:
$ ./dm-search [list of data fit results] --mc [list of atmospheric MC files] --muon-mc [list of muon MC files] --steps [steps]
After running you will get a plot showing the limits for back to back dark
matter at a range of energies.
"""
from __future__ import print_function, division
import numpy as np
from scipy.stats import iqr, poisson
from matplotlib.lines import Line2D
from scipy.stats import iqr, norm, beta, percentileofscore
from scipy.special import spence
from itertools import izip_longest
from sddm.stats import *
from sddm.dc import estimate_errors, EPSILON, truncnorm_scaled
import emcee
from sddm import printoptions
from sddm.utils import fast_cdf, correct_energy_bias
from scipy.integrate import quad
from sddm.dm import *
from sddm import SNOMAN_MASS
import nlopt
# Likelihood Fit Parameters
# 0 - Atmospheric Neutrino Flux Scale
# 1 - Electron energy bias
# 2 - Electron energy resolution
# 3 - Muon energy bias
# 4 - Muon energy resolution
# 5 - External Muon scale
# 6 - Dark Matter Scale
# Number of events to use in the dark matter Monte Carlo histogram when fitting
# Ideally this would be as big as possible, but the bigger it is, the more time
# the fit takes.
DM_SAMPLES = 10000
DM_MASSES = {2020: np.logspace(np.log10(22),np.log10(10e3 - 500),101),
2222: np.logspace(np.log10(318),np.log10(10e3 - 500),101)}
DISCOVERY_P_VALUE = 0.05
# Energy resolution as a fraction of energy for dark matter signal
DM_ENERGY_RESOLUTION = 0.1
FIT_PARS = [
'Atmospheric Neutrino Flux Scale',
'Electron energy bias',
'Electron energy resolution',
'Muon energy bias',
'Muon energy resolution',
'External Muon scale',
'Dark Matter Scale']
# Uncertainty on the energy scale
#
# - the muon energy scale and resolution terms come directly from measurements
# on stopping muons, so those are known well.
# - for electrons, we only have Michel electrons at the low end of our energy
# range, and therefore we don't really have any good way of constraining the
# energy scale or resolution. However, if we assume that the ~7% energy bias
# in the muons is from the single PE distribution (it seems likely to me that
# that is a major part of the bias), then the energy scale should be roughly
# the same. Since the Michel electron distributions are consistent, we leave
# the mean value at 0, but to be conservative, we set the error to 10%.
# - The energy resolution for muons was pretty much spot on, and so we expect
# the same from electrons. In addition, the Michel spectrum is consistent so
# at that energy level we don't see anything which leads us to expect a major
# difference. To be conservative, and because I don't think it really affects
# the analysis at all, I'll leave the uncertainty here at 10% anyways.
PRIORS = [
1.0, # Atmospheric Neutrino Scale
0.015, # Electron energy scale
0.0, # Electron energy resolution
0.053, # Muon energy scale
0.0, # Muon energy resolution
0.0, # Muon scale
0.0, # Dark Matter Scale
]
PRIOR_UNCERTAINTIES = [
0.2, # Atmospheric Neutrino Scale
0.03, # Electron energy scale
0.05, # Electron energy resolution
0.01, # Muon energy scale
0.013, # Muon energy resolution
10.0, # Muon scale
np.inf,# Dark Matter Scale
]
# Lower bounds for the fit parameters
PRIORS_LOW = [
EPSILON,
-10,
EPSILON,
-10,
EPSILON,
0,
0,
]
# Upper bounds for the fit parameters
PRIORS_HIGH = [
10,
10,
10,
10,
10,
1e9,
1000,
]
particle_id = {20: 'e', 22: r'\mu'}
def plot_hist2(hists, bins, color=None):
for id in (20,22,2020,2022,2222):
if id == 20:
plt.subplot(2,3,1)
elif id == 22:
plt.subplot(2,3,2)
elif id == 2020:
plt.subplot(2,3,4)
elif id == 2022:
plt.subplot(2,3,5)
elif id == 2222:
plt.subplot(2,3,6)
bincenters = (bins[1:] + bins[:-1])/2
plt.hist(bincenters, bins=bins, histtype='step', weights=hists[id],color=color)
plt.gca().set_xscale("log")
plt.xlabel("Energy (MeV)")
plt.title('$' + ''.join([particle_id[int(''.join(x))] for x in grouper(str(id),2)]) + '$')
if len(hists):
plt.tight_layout()
def get_mc_hists(data,x,bins,scale=1.0,reweight=False):
"""
Returns the expected Monte Carlo histograms for the atmospheric neutrino
background.
Args:
- data: pandas dataframe of the Monte Carlo events
- x: fit parameters
- bins: histogram bins
- scale: multiply histograms by an overall scale factor
This function does two basic things:
1. apply the energy bias and resolution corrections
2. histogram the results
Returns a dictionary mapping particle id combo -> histogram.
"""
df_dict = {}
for id in (20,22,2020,2022,2222):
df_dict[id] = data[data.id == id]
return get_mc_hists_fast(df_dict,x,bins,scale,reweight)
def get_mc_hists_fast(df_dict,x,bins,scale=1.0,reweight=False):
"""
Same as get_mc_hists() but the first argument is a dictionary mapping
particle id -> dataframe. This is much faster than selecting the events
from the dataframe every time.
"""
mc_hists = {}
for id in (20,22,2020,2022,2222):
df = df_dict[id]
if id == 20:
ke = df.energy1.values*(1+x[1])
resolution = df.energy1.values*max(EPSILON,x[2])
elif id == 2020:
ke = df.energy1.values*(1+x[1]) + df.energy2.values*(1+x[1])
resolution = np.sqrt((df.energy1.values*max(EPSILON,x[2]))**2 + (df.energy2.values*max(EPSILON,x[2]))**2)
elif id == 22:
ke = df.energy1.values*(1+x[3])
resolution = df.energy1.values*max(EPSILON,x[4])
elif id == 2222:
ke = df.energy1.values*(1+x[3]) + df.energy2.values*(1+x[3])
resolution = np.sqrt((df.energy1.values*max(EPSILON,x[4]))**2 + (df.energy2.values*max(EPSILON,x[4]))**2)
elif id == 2022:
ke = df.energy1.values*(1+x[1]) + df.energy2.values*(1+x[3])
resolution = np.sqrt((df.energy1.values*max(EPSILON,x[2]))**2 + (df.energy2.values*max(EPSILON,x[4]))**2)
if reweight:
cdf = fast_cdf(bins[:,np.newaxis],ke,resolution)*df.weight.values
else:
cdf = fast_cdf(bins[:,np.newaxis],ke,resolution)
mc_hists[id] = np.sum(cdf[1:] - cdf[:-1],axis=-1)
mc_hists[id] *= scale
return mc_hists
def get_data_hists(data,bins,scale=1.0):
"""
Returns the data histogrammed into `bins`.
"""
data_hists = {}
for id in (20,22,2020,2022,2222):
data_hists[id] = np.histogram(data[data.id == id].ke.values,bins=bins)[0]*scale
return data_hists
def make_nll(dm_particle_id, dm_mass, dm_energy, data, muons, mc, atmo_scale_factor, muon_scale_factor, bins, print_nll=False):
df_dict = {}
for id in (20,22,2020,2022,2222):
df_dict[id] = mc[mc.id == id]
df_dict_muon = {}
for id in (20,22,2020,2022,2222):
df_dict_muon[id] = muons[muons.id == id]
data_hists = get_data_hists(data,bins)
dm_sample = get_dm_sample(DM_SAMPLES,dm_particle_id,dm_mass,dm_energy)
df_dict_dm = {}
for id in (20,22,2020,2022,2222):
df_dict_dm[id] = dm_sample[dm_sample.id == id]
def nll(x, grad=None):
if (x < PRIORS_LOW).any() or (x > PRIORS_HIGH).any():
return np.inf
# Get the Monte Carlo histograms. We need to do this within the
# likelihood function since we apply the energy resolution parameters
# to the Monte Carlo.
mc_hists = get_mc_hists_fast(df_dict,x,bins,scale=1/atmo_scale_factor)
muon_hists = get_mc_hists_fast(df_dict_muon,x,bins,scale=1/muon_scale_factor)
dm_hists = get_mc_hists_fast(df_dict_dm,x,bins,scale=1/len(dm_sample))
# Calculate the negative log of the likelihood of observing the data
# given the fit parameters
nll = 0
for id in data_hists:
oi = data_hists[id]
ei = mc_hists[id]*x[0] + muon_hists[id]*x[5] + dm_hists[id]*x[6] + EPSILON
N = ei.sum()
nll -= -N - np.sum(gammaln(oi+1)) + np.sum(oi*np.log(ei))
# Add the priors
nll -= norm.logpdf(x[:6],PRIORS[:6],PRIOR_UNCERTAINTIES[:6]).sum()
if print_nll:
# Print the result
print("nll = %.2f" % nll)
return nll
return nll
def do_fit(dm_particle_id,dm_mass,dm_energy,data,muon,data_mc,atmo_scale_factor,muon_scale_factor,bins,steps,print_nll=False,walkers=100,thin=10):
"""
Run the fit and return the minimum along with samples from running an MCMC
starting near the minimum.
Args:
- data: pandas dataframe representing the data to fit
- muon: pandas dataframe representing the expected background from
external muons
- data_mc: pandas dataframe representing the expected background from
atmospheric neutrino events
- bins: an array of bins to use for the fit
- steps: the number of MCMC steps to run
Returns a tuple (xopt, samples) where samples is an array of shape (steps,
number of parameters).
"""
nll = make_nll(dm_particle_id,dm_mass,dm_energy,data,muon,data_mc,atmo_scale_factor,muon_scale_factor,bins,print_nll)
pos = np.empty((walkers, len(PRIORS)),dtype=np.double)
for i in range(pos.shape[0]):
pos[i] = sample_priors()
nwalkers, ndim = pos.shape
# We use the KDEMove here because I think it should sample the likelihood
# better. Because we have energy scale parameters and we are doing a binned
# likelihood, the likelihood is discontinuous. There can also be several
# local minima. The author of emcee recommends using the KDEMove with a lot
# of workers to try and properly sample a multimodal distribution. In
# addition, I've found that the autocorrelation time for the KDEMove is
# much better than the other moves.
sampler = emcee.EnsembleSampler(nwalkers, ndim, lambda x: -nll(x), moves=emcee.moves.KDEMove())
with np.errstate(invalid='ignore'):
sampler.run_mcmc(pos, steps)
print("Mean acceptance fraction: {0:.3f}".format(np.mean(sampler.acceptance_fraction)))
try:
print("autocorrelation time: ", sampler.get_autocorr_time(quiet=True))
except Exception as e:
print(e)
samples = sampler.get_chain(flat=True,thin=thin)
# Now, we use nlopt to find the best set of parameters. We start at the
# best starting point from the MCMC and then run the SBPLX routine.
x0 = sampler.get_chain(flat=True)[sampler.get_log_prob(flat=True).argmax()]
opt = nlopt.opt(nlopt.LN_SBPLX, len(x0))
opt.set_min_objective(nll)
low = np.array(PRIORS_LOW)
high = np.array(PRIORS_HIGH)
opt.set_lower_bounds(low)
opt.set_upper_bounds(high)
opt.set_ftol_abs(1e-10)
opt.set_initial_step([0.01]*len(x0))
xopt = opt.optimize(x0)
return xopt, samples
def sample_priors():
"""
Returns a random sample of the fit parameters from the priors. For the
first 6 parameters we use a truncated normal distribution, and for the last
parameter we use a uniform distribution.
"""
return np.concatenate((truncnorm_scaled(PRIORS_LOW[:6],PRIORS_HIGH[:6],PRIORS[:6],PRIOR_UNCERTAINTIES[:6]),[np.random.uniform(PRIORS_LOW[6],PRIORS_HIGH[6])]))
def get_dm_sample(n,dm_particle_id,dm_mass,dm_energy):
"""
Returns a dataframe containing events from a dark matter particle.
Args:
- n: int
number of events
- dm_particle_id: int
the particle id of the DM particle (2020 or 2222)
- dm_energy: float
The total kinetic energy of the DM particle
- dm_resolution: float
The fractional energy resolution of the dark matter particle, i.e.
the actual energy resolution will be dm_energy*dm_resolution.
"""
id1 = dm_particle_id//100
id2 = dm_particle_id % 100
m1 = SNOMAN_MASS[id1]
m2 = SNOMAN_MASS[id2]
energy1 = []
data = np.empty(n,dtype=[('energy1',np.double),('energy2',np.double),('ke',np.double),('id1',np.int),('id2',np.int),('id',np.int)])
for i, (v1, v2) in enumerate(islice(gen_decay(dm_mass,dm_energy,m1,m2),n)):
pos = rand_ball(PSUP_RADIUS)
E1 = v1[0]
E2 = v2[0]
p1 = np.linalg.norm(v1[1:])
p2 = np.linalg.norm(v2[1:])
T1 = E1 - m1
T2 = E2 - m2
# FIXME: Get electron and muon resolution
T1 += norm.rvs(scale=T1*0.05)
T2 += norm.rvs(scale=T2*0.05)
data[i] = T1, T2, T1 + T2, id1, id2, dm_particle_id
return pd.DataFrame(data)
def integrate_mc_hist(mc, muons, id, x, a, b, atmo_scale_factor, muon_scale_factor):
"""
Integrate the Monte Carlo expected histograms from a to b.
Args:
- mc: DataFrame
Pandas dataframe of atmospheric Monte Carlo events.
- muons: DataFrame
Pandas dataframe of external muon Monte Carlo events.
- id: int
The particle ID histogram to integrate.
- x: array
The fit parameters.
- a, b: float
Bounds of the integration.
- atmo_scale_factor, muon_scale_factor: float
Scale factors for the fit parameters.
"""
mc_hists = get_mc_hists(mc,x,bins,scale=x[0]/atmo_scale_factor)
muon_hists = get_mc_hists(muons,x,bins,scale=x[5]/muon_scale_factor)
def total_hist(x):
if x < bins[0] or x > bins[-1]:
return 0
i = np.digitize(x,bins)
if i == len(bins):
i = len(bins) - 1
return (mc_hists[id][i-1] + muon_hists[id][i-1])/(bins[i]-bins[i-1])
# Yes, this is a stupid simple integration that I don't need quad for, but
# I don't want to have to code all the corner cases including when a and b
# are in the same bin, etc.
return quad(total_hist,a,b,points=bins[(bins >= a) & (bins <= b)])[0]
def get_limits(dm_masses,data,muon,data_mc,atmo_scale_factor,muon_scale_factor,bins,steps,print_nll,walkers,thin):
limits = {}
best_fit = {}
discovery_array = {}
for dm_particle_id in (2020,2222):
limits[dm_particle_id] = []
best_fit[dm_particle_id] = []
discovery_array[dm_particle_id] = []
for dm_mass in dm_masses[dm_particle_id]:
id1 = dm_particle_id//100
id2 = dm_particle_id % 100
m1 = SNOMAN_MASS[id1]
m2 = SNOMAN_MASS[id2]
dm_energy = dm_mass
xopt, samples = do_fit(dm_particle_id,dm_mass,dm_energy,data,muon,data_mc,atmo_scale_factor,muon_scale_factor,bins,steps,print_nll,walkers,thin)
limit = np.percentile(samples[:,6],90)
limits[dm_particle_id].append(limit)
# Here, to determine if there is a discovery we make an approximate
# calculation of the number of events which would be significant.
#
# We expect the likelihood to be approximately that of a Poisson
# distribution with n background events and we are searching for a
# signal s. n is constrained by the rest of the histograms, and so
# we can treat is as being approximately fixed. In this case, the
# likelihood looks approximately like:
#
# P(s) = e^(-(s+n))(s+n)**i/i!
#
# Where i is the actual number of events. Under the null hypothesis
# (i.e. no dark matter), we expect i to be Poisson distributed with
# mean n. Therefore s should have the same distribution but offset
# by n. Therefore, to determine the threshold, we simply look for
# the threshold we expect in n and then subtract n.
dm_kinetic_energy = dm_energy - m1 - m2
a = dm_kinetic_energy - 2*dm_kinetic_energy*DM_ENERGY_RESOLUTION
b = dm_kinetic_energy + 2*dm_kinetic_energy*DM_ENERGY_RESOLUTION
n = integrate_mc_hist(data_mc, muon, dm_particle_id, xopt, a, b, atmo_scale_factor, muon_scale_factor)
# Set our discovery threshold to the p-value we want divided by the
# number of bins. The idea here is that the number of bins is
# approximately equal to the number of trials so we need to
# increase our discovery threshold to account for the look
# elsewhere effect.
threshold = DISCOVERY_P_VALUE/(len(bins)-1)
discovery = poisson.ppf(1-threshold,n) + 1 - n
discovery_array[dm_particle_id].append(discovery)
best_fit[dm_particle_id].append(xopt[6])
return limits, best_fit, discovery_array
if __name__ == '__main__':
import argparse
import numpy as np
import pandas as pd
import sys
import h5py
from sddm.plot_energy import *
from sddm.plot import *
from sddm import setup_matplotlib
import nlopt
parser = argparse.ArgumentParser("plot fit results")
parser.add_argument("filenames", nargs='+', help="input files")
parser.add_argument("--save", action='store_true', default=False, help="save corner plots for backgrounds")
parser.add_argument("--mc", nargs='+', required=True, help="atmospheric MC files")
parser.add_argument("--muon-mc", nargs='+', required=True, help="muon MC files")
parser.add_argument("--nhit-thresh", type=int, default=None, help="nhit threshold to apply to events before processing (should only be used for testing to speed things up)")
parser.add_argument("--steps", type=int, default=1000, help="number of steps in the MCMC chain")
parser.add_argument("--pull", type=int, default=0, help="plot pull plots")
parser.add_argument("--weights", nargs='+', required=True, help="GENIE reweight HDF5 files")
parser.add_argument("--print-nll", action='store_true', default=False, help="print nll values")
parser.add_argument("--walkers", type=int, default=100, help="number of walkers")
parser.add_argument("--thin", type=int, default=10, help="number of steps to thin")
parser.add_argument("--test", type=int, default=0, help="run tests to check discovery threshold")
args = parser.parse_args()
setup_matplotlib(args.save)
import matplotlib.pyplot as plt
# Loop over runs to prevent using too much memory
evs = []
rhdr = pd.concat([read_hdf(filename, "rhdr").assign(filename=filename) for filename in args.filenames],ignore_index=True)
for run, df in rhdr.groupby('run'):
evs.append(get_events(df.filename.values, merge_fits=True, nhit_thresh=args.nhit_thresh))
ev = pd.concat(evs)
ev = correct_energy_bias(ev)
# Note: We loop over the MC filenames here instead of just passing the
# whole list to get_events() because I had to rerun some of the MC events
# using SNOMAN and so most of the runs actually have two different files
# and otherwise the GTIDs will clash
ev_mcs = []
for filename in args.mc:
ev_mcs.append(get_events([filename], merge_fits=True, nhit_thresh=args.nhit_thresh, mc=True))
ev_mc = pd.concat(ev_mcs)
muon_mc = get_events(args.muon_mc, merge_fits=True, nhit_thresh=args.nhit_thresh, mc=True)
weights = pd.concat([read_hdf(filename, "weights") for filename in args.weights],ignore_index=True)
ev_mc = correct_energy_bias(ev_mc)
muon_mc = correct_energy_bias(muon_mc)
# Set all prompt events in the MC to be muons
muon_mc.loc[muon_mc.prompt & muon_mc.filename.str.contains("cosmic"),'muon'] = True
ev = ev.reset_index()
ev_mc = ev_mc.reset_index()
muon_mc = muon_mc.reset_index()
# 00-orphan cut
ev = ev[(ev.gtid & 0xff) != 0]
ev_mc = ev_mc[(ev_mc.gtid & 0xff) != 0]
muon_mc = muon_mc[(muon_mc.gtid & 0xff) != 0]
# remove events 200 microseconds after a muon
ev = ev.groupby('run',group_keys=False).apply(muon_follower_cut)
# Get rid of events which don't have a successful fit
ev = ev[~np.isnan(ev.fmin)]
ev_mc = ev_mc[~np.isnan(ev_mc.fmin)]
muon_mc = muon_mc[~np.isnan(muon_mc.fmin)]
# require (r/r_psup)^3 < 0.9
ev = ev[ev.r_psup < 0.9]
ev_mc = ev_mc[ev_mc.r_psup < 0.9]
muon_mc = muon_mc[muon_mc.r_psup < 0.9]
# require psi < 6
ev = ev[ev.psi < 6]
ev_mc = ev_mc[ev_mc.psi < 6]
muon_mc = muon_mc[muon_mc.psi < 6]
data = ev[ev.signal & ev.prompt & ~ev.atm]
data_atm = ev[ev.signal & ev.prompt & ev.atm]
# Right now we use the muon Monte Carlo in the fit. If you want to use the
# actual data, you can comment the next two lines and then uncomment the
# two after that.
muon = muon_mc[muon_mc.muon & muon_mc.prompt & ~muon_mc.atm]
muon_atm = muon_mc[muon_mc.muon & muon_mc.prompt & muon_mc.atm]
#muon = ev[ev.muon & ev.prompt & ~ev.atm]
#muon_atm = ev[ev.muon & ev.prompt & ev.atm]
if (~rhdr.run.isin(ev_mc.run)).any():
print_warning("Error! The following runs have no Monte Carlo: %s" % \
rhdr.run[~rhdr.run.isin(ev_mc.run)].values)
sys.exit(1)
ev_mc = ev_mc[ev_mc.run.isin(rhdr.run)]
data_mc = ev_mc[ev_mc.signal & ev_mc.prompt & ~ev_mc.atm]
data_atm_mc = ev_mc[ev_mc.signal & ev_mc.prompt & ev_mc.atm]
data_mc = ev_mc[ev_mc.signal & ev_mc.prompt & ~ev_mc.atm]
bins = np.logspace(np.log10(20),np.log10(10e3),21)
atmo_scale_factor = 100.0
muon_scale_factor = len(muon) + len(muon_atm)
if args.pull:
pull = [[] for i in range(len(FIT_PARS))]
# Set the random seed so we get reproducible results here
np.random.seed(0)
for i in range(args.pull):
xtrue = sample_priors()
# Calculate expected number of events
N = len(data_mc)*xtrue[0]/atmo_scale_factor
N_atm = len(data_atm_mc)*xtrue[0]/atmo_scale_factor
N_muon = len(muon)*xtrue[5]/muon_scale_factor
N_muon_atm = len(muon_atm)*xtrue[5]/muon_scale_factor
N_dm = xtrue[6]
# Calculate observed number of events
n = np.random.poisson(N)
n_atm = np.random.poisson(N_atm)
n_muon = np.random.poisson(N_muon)
n_muon_atm = np.random.poisson(N_muon_atm)
n_dm = np.random.poisson(N_dm)
dm_particle_id = np.random.choice([2020,2222])
dm_mass = np.random.uniform(20,10e3)
dm_energy = dm_mass
# Sample data from Monte Carlo
data = pd.concat((data_mc.sample(n=n,replace=True), muon.sample(n=n_muon,replace=True),get_dm_sample(n_dm,dm_particle_id,dm_mass,dm_energy)))
data_atm = pd.concat((data_atm_mc.sample(n=n_atm,replace=True), muon_atm.sample(n=n_muon_atm,replace=True)))
# Smear the energies by the additional energy resolution
data.loc[data.id1 == 20,'energy1'] *= (1+xtrue[1]+np.random.randn(np.count_nonzero(data.id1 == 20))*xtrue[2])
data.loc[data.id1 == 22,'energy1'] *= (1+xtrue[3]+np.random.randn(np.count_nonzero(data.id1 == 22))*xtrue[4])
data.loc[data.id2 == 20,'energy2'] *= (1+xtrue[1]+np.random.randn(np.count_nonzero(data.id2 == 20))*xtrue[2])
data.loc[data.id2 == 22,'energy2'] *= (1+xtrue[3]+np.random.randn(np.count_nonzero(data.id2 == 22))*xtrue[4])
data['ke'] = data['energy1'].fillna(0) + data['energy2'].fillna(0) + data['energy3'].fillna(0)
data_atm.loc[data_atm.id1 == 20,'energy1'] *= (1+xtrue[1]+np.random.randn(np.count_nonzero(data_atm.id1 == 20))*xtrue[2])
data_atm.loc[data_atm.id1 == 22,'energy1'] *= (1+xtrue[3]+np.random.randn(np.count_nonzero(data_atm.id1 == 22))*xtrue[4])
data_atm.loc[data_atm.id2 == 20,'energy2'] *= (1+xtrue[1]+np.random.randn(np.count_nonzero(data_atm.id2 == 20))*xtrue[2])
data_atm.loc[data_atm.id2 == 22,'energy2'] *= (1+xtrue[3]+np.random.randn(np.count_nonzero(data_atm.id2 == 22))*xtrue[4])
data_atm['ke'] = data_atm['energy1'].fillna(0) + data_atm['energy2'].fillna(0) + data_atm['energy3'].fillna(0)
xopt, samples = do_fit(dm_particle_id,dm_mass,dm_energy,data,muon,data_mc,atmo_scale_factor,muon_scale_factor,bins,args.steps,args.print_nll,args.walkers,args.thin)
for i in range(len(FIT_PARS)):
# The "pull plots" we make here are actually produced via a
# procedure called "Simulation Based Calibration".
#
# See https://arxiv.org/abs/1804.06788.
pull[i].append(percentileofscore(samples[:,i],xtrue[i]))
fig = plt.figure()
axes = []
for i, name in enumerate(FIT_PARS):
axes.append(plt.subplot(4,2,i+1))
n, bins, patches = plt.hist(pull[i],bins=np.linspace(0,100,11),histtype='step')
expected = len(pull[i])/(len(bins)-1)
plt.axhline(expected,color='k',ls='--',alpha=0.25)
plt.axhspan(poisson.ppf(0.005,expected), poisson.ppf(0.995,expected), facecolor='0.5', alpha=0.25)
plt.title(name)
for ax in axes:
despine(ax=ax,left=True,trim=True)
ax.get_yaxis().set_visible(False)
plt.tight_layout()
if args.save:
fig.savefig("dm_search_pull_plot.pdf")
fig.savefig("dm_search_pull_plot.eps")
else:
plt.show()
sys.exit(0)
if args.test:
# Set the random seed so we get reproducible results here
np.random.seed(0)
discoveries = 0
for i in range(args.test):
xtrue = sample_priors()
# Calculate expected number of events
N = len(data_mc)*xtrue[0]/atmo_scale_factor
N_atm = len(data_atm_mc)*xtrue[0]/atmo_scale_factor
N_muon = len(muon)*xtrue[5]/muon_scale_factor
N_muon_atm = len(muon_atm)*xtrue[5]/muon_scale_factor
N_dm = xtrue[6]
# Calculate observed number of events
n = np.random.poisson(N)
n_atm = np.random.poisson(N_atm)
n_muon = np.random.poisson(N_muon)
n_muon_atm = np.random.poisson(N_muon_atm)
n_dm = np.random.poisson(N_dm)
dm_particle_id = np.random.choice([2020,2222])
dm_mass = np.random.uniform(20,10e3)
dm_energy = dm_mass
# Sample data from Monte Carlo
data = pd.concat((data_mc.sample(n=n,replace=True), muon.sample(n=n_muon,replace=True),get_dm_sample(n_dm,dm_particle_id,dm_mass,dm_energy)))
data_atm = pd.concat((data_atm_mc.sample(n=n_atm,replace=True), muon_atm.sample(n=n_muon_atm,replace=True)))
# Smear the energies by the additional energy resolution
data.loc[data.id1 == 20,'energy1'] *= (1+xtrue[1]+np.random.randn(np.count_nonzero(data.id1 == 20))*xtrue[2])
data.loc[data.id1 == 22,'energy1'] *= (1+xtrue[3]+np.random.randn(np.count_nonzero(data.id1 == 22))*xtrue[4])
data.loc[data.id2 == 20,'energy2'] *= (1+xtrue[1]+np.random.randn(np.count_nonzero(data.id2 == 20))*xtrue[2])
data.loc[data.id2 == 22,'energy2'] *= (1+xtrue[3]+np.random.randn(np.count_nonzero(data.id2 == 22))*xtrue[4])
data['ke'] = data['energy1'].fillna(0) + data['energy2'].fillna(0) + data['energy3'].fillna(0)
data_atm.loc[data_atm.id1 == 20,'energy1'] *= (1+xtrue[1]+np.random.randn(np.count_nonzero(data_atm.id1 == 20))*xtrue[2])
data_atm.loc[data_atm.id1 == 22,'energy1'] *= (1+xtrue[3]+np.random.randn(np.count_nonzero(data_atm.id1 == 22))*xtrue[4])
data_atm.loc[data_atm.id2 == 20,'energy2'] *= (1+xtrue[1]+np.random.randn(np.count_nonzero(data_atm.id2 == 20))*xtrue[2])
data_atm.loc[data_atm.id2 == 22,'energy2'] *= (1+xtrue[3]+np.random.randn(np.count_nonzero(data_atm.id2 == 22))*xtrue[4])
data_atm['ke'] = data_atm['energy1'].fillna(0) + data_atm['energy2'].fillna(0) + data_atm['energy3'].fillna(0)
limits, best_fit, discovery_array = get_limits(DM_MASSES,data,muon,data_mc,atmo_scale_factor,muon_scale_factor,bins,args.steps,args.print_nll,args.walkers,args.thin)
for id in (2020,2222):
if (best_fit[id] > discovery_array[id]).any():
discoveries += 1
print("expected %.2f discoveries" % DISCOVERY_P_VALUE)
print("actually got %i/%i = %.2f discoveries" % (discoveries,args.test,discoveries/args.test))
sys.exit(0)
limits, best_fit, discovery_array = get_limits(DM_MASSES,data,muon,data_mc,atmo_scale_factor,muon_scale_factor,bins,args.steps,args.print_nll,args.walkers,args.thin)
fig = plt.figure()
for color, dm_particle_id in zip(('C0','C1'),(2020,2222)):
plt.plot(DM_MASSES[dm_particle_id],limits[dm_particle_id],color=color,label='$' + ''.join([particle_id[int(''.join(x))] for x in grouper(str(dm_particle_id),2)]) + '$')
plt.gca().set_xscale("log")
despine(fig,trim=True)
plt.xlabel("Energy (MeV)")
plt.ylabel("Event Rate Limit (events)")
plt.legend()
plt.tight_layout()
if args.save:
plt.savefig("dm_search_limit.pdf")
plt.savefig("dm_search_limit.eps")
else:
plt.suptitle("Dark Matter Limits")
fig = plt.figure()
for color, dm_particle_id in zip(('C0','C1'),(2020,2222)):
plt.plot(DM_MASSES[dm_particle_id],best_fit[dm_particle_id],color=color,label='$' + ''.join([particle_id[int(''.join(x))] for x in grouper(str(dm_particle_id),2)]) + '$')
plt.plot(DM_MASSES[dm_particle_id],discovery_array[dm_particle_id],color=color,ls='--')
plt.gca().set_xscale("log")
despine(fig,trim=True)
plt.xlabel("Energy (MeV)")
plt.ylabel("Event Rate Limit (events)")
plt.legend()
plt.tight_layout()
if args.save:
plt.savefig("dm_best_fit_with_discovery_threshold.pdf")
plt.savefig("dm_best_fit_with_discovery_threshold.eps")
else:
plt.suptitle("Best Fit Dark Matter")
plt.show()
|