GNU GENERAL PUBLIC LICENSE Version 3, 29 June 2007 Copyright (C) 2007 Free Software Foundation, Inc. Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed. Preamble The GNU General Public License is a free, copyleft license for software and other kinds of works. The licenses for most software and other practical works are designed to take away your freedom to share and change the works. By contrast, the GNU General Public License is intended to guarantee your freedom to share and change all versions of a program--to make sure it remains free software for all its users. We, the Free Software Foundation, use the GNU General Public License for most of our software; it applies also to any other work released this way by its authors. You can apply it to your programs, too. When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make sure that you have the freedom to distribute copies of free software (and charge for them if you wish), that you receive source code or can get it if you want it, that you can change the software or use pieces of it in new free programs, and that you know you can do these things. To protect your rights, we need to prevent others from denying you these rights or asking you to surrender the rights. Therefore, you have certain responsibilities if you distribute copies of the software, or if you modify it: responsibilities to respect the freedom of others. For example, if you distribute copies of such a program, whether gratis or for a fee, you must pass on to the recipients the same freedoms that you received. You must make sure that they, too, receive or can get the source code. And you must show them these terms so they know their rights. Developers that use the GNU GPL protect your rights with two steps: (1) assert copyright on the software, and (2) offer you this License giving you legal permission to copy, distribute and/or modify it. For the developers' and authors' protection, the GPL clearly explains that there is no warranty for this free software. For both users' and authors' sake, the GPL requires that modified versions be marked as changed, so that their problems will not be attributed erroneously to authors of previous versions. Some devices are designed to deny users access to install or run modified versions of the software inside them, although the manufacturer can do so. This is fundamentally incompatible with the aim of protecting users' freedom to change the software. The systematic pattern of such abuse occurs in the area of products for individuals to use, which is precisely where it is most unacceptable. Therefore, we have designed this version of the GPL to prohibit the practice for those products. If such problems arise substantially in other domains, we stand ready to extend this provision to those domains in future versions of the GPL, as needed to protect the freedom of users. Finally, every program is threatened constantly by software patents. States should not allow patents to restrict development and use of software on general-purpose computers, but in those that do, we wish to avoid the special danger that patents applied to a free program could make it effectively proprietary. To prevent this, the GPL assures that patents cannot be used to render the program non-free. The precise terms and conditions for copying, distribution and modification follow. TERMS AND CONDITIONS 0. Definitions. "This License" refers to version 3 of the GNU General Public License. "Copyright" also means copyright-like laws that apply to other kinds of works, such as semiconductor masks. "The Program" refers to any copyrightable work licensed under this License. Each licensee is addressed as "you". "Licensees" and "recipients" may be individuals or organizations. To "modify" a work means to copy from or adapt all or part of the work in a fashion requiring copyright permission, other than the making of an exact copy. The resulting work is called a "modified version" of the earlier work or a work "based on" the earlier work. A "covered work" means either the unmodified Program or a work based on the Program. To "propagate" a work means to do anything with it that, without permission, would make you directly or secondarily liable for infringement under applicable copyright law, except executing it on a computer or modifying a private copy. Propagation includes copying, distribution (with or without modification), making available to the public, and in some countries other activities as well. To "convey" a work means any kind of propagation that enables other parties to make or receive copies. Mere interaction with a user through a computer network, with no transfer of a copy, is not conveying. An interactive user interface displays "Appropriate Legal Notices" to the extent that it includes a convenient and prominently visible feature that (1) displays an appropriate copyright notice, and (2) tells the user that there is no warranty for the work (except to the extent that warranties are provided), that licensees may convey the work under this License, and how to view a copy of this License. If the interface presents a list of user commands or options, such as a menu, a prominent item in the list meets this criterion. 1. Source Code. The "source code" for a work means the preferred form of the work for making modifications to it. "Object code" means any non-source form of a work. A "Standard Interface" means an interface that either is an official standard defined by a recognized standards body, or, in the case of interfaces specified for a particular programming language, one that is widely used among developers working in that language. The "System Libraries" of an executable work include anything, other than the work as a whole, that (a) is included in the normal form of packaging a Major Component, but which is not part of that Major Component, and (b) serves only to enable use of the work with that Major Component, or to implement a Standard Interface for which an implementation is available to the public in source code form. A "Major Component", in this context, means a major essential component (kernel, window system, and so on) of the specific operating system (if any) on which the executable work runs, or a compiler used to produce the work, or an object code interpreter used to run it. The "Corresponding Source" for a work in object code form means all the source code needed to generate, install, and (for an executable work) run the object code and to modify the work, including scripts to control those activities. However, it does not include the work's System Libraries, or general-purpose tools or generally available free programs which are used unmodified in performing those activities but which are not part of the work. For example, Corresponding Source includes interface definition files associated with source files for the work, and the source code for shared libraries and dynamically linked subprograms that the work is specifically designed to require, such as by intimate data communication or control flow between those subprograms and other parts of the work. The Corresponding Source need not include anything that users can regenerate automatically from other parts of the Corresponding Source. The Corresponding Source for a work in source code form is that same work. 2. Basic Permissions. All rights granted under this License are granted for the term of copyright on the Program, and are irrevocable provided the stated conditions are met. This License explicitly affirms your unlimited permission to run the unmodified Program. The output from running a covered work is covered by this License only if the output, given its content, constitutes a covered work. This License acknowledges your rights of fair use or other equivalent, as provided by copyright law. You may make, run and propagate covered works that you do not convey, without conditions so long as your license otherwise remains in force. You may convey covered works to others for the sole purpose of having them make modifications exclusively for you, or provide you with facilities for running those works, provided that you comply with the terms of this License in conveying all material for which you do not control copyright. Those thus making or running the covered works for you must do so exclusively on your behalf, under your direction and control, on terms that prohibit them from making any copies of your copyrighted material outside their relationship with you. Conveying under any other circumstances is permitted solely under the conditions stated below. Sublicensing is not allowed; section 10 makes it unnecessary. 3. Protecting Users' Legal Rights From Anti-Circumvention Law. No covered work shall be deemed part of an effective technological measure under any applicable law fulfilling obligations under article 11 of the WIPO copyright treaty adopted on 20 December 1996, or similar laws prohibiting or restricting circumvention of such measures. When you convey a covered work, you waive any legal power to forbid circumvention of technological measures to the extent such circumvention is effected by exercising rights under this License with respect to the covered work, and you disclaim any intention to limit operation or modification of the work as a means of enforcing, against the work's users, your or third parties' legal rights to forbid circumvention of technological measures. 4. Conveying Verbatim Copies. You may convey verbatim copies of the Program's source code as you receive it, in any medium, provided that you conspicuously and appropriately publish on each copy an appropriate copyright notice; keep intact all notices stating that this License and any non-permissive terms added in accord with section 7 apply to the code; keep intact all notices of the absence of any warranty; and give all recipients a copy of this License along with the Program. You may charge any price or no price for each copy that you convey, and you may offer support or warranty protection for a fee. 5. Conveying Modified Source Versions. You may convey a work based on the Program, or the modifications to produce it from the Program, in the form of source code under the terms of section 4, provided that you also meet all of these conditions: a) The work must carry prominent notices stating that you modified it, and giving a relevant date. b) The work must carry prominent notices stating that it is released under this License and any conditions added under section 7. This requirement modifies the requirement in section 4 to "keep intact all notices". c) You must license the entire work, as a whole, under this License to anyone who comes into possession of a copy. This License will therefore apply, along with any applicable section 7 additional terms, to the whole of the work, and all its parts, regardless of how they are packaged. This License gives no permission to license the work in any other way, but it does not invalidate such permission if you have separately received it. d) If the work has interactive user interfaces, each must display Appropriate Legal Notices; however, if the Program has interactive interfaces that do not display Appropriate Legal Notices, your work need not make them do so. A compilation of a covered work with other separate and independent works, which are not by their nature extensions of the covered work, and which are not combined with it such as to form a larger program, in or on a volume of a storage or distribution medium, is called an "aggregate" if the compilation and its resulting copyright are not used to limit the access or legal rights of the compilation's users beyond what the individual works permit. Inclusion of a covered work in an aggregate does not cause this License to apply to the other parts of the aggregate. 6. Conveying Non-Source Forms. You may convey a covered work in object code form under the terms of sections 4 and 5, provided that you also convey the machine-readable Corresponding Source under the terms of this License, in one of these ways: a) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by the Corresponding Source fixed on a durable physical medium customarily used for software interchange. b) Convey the object code in, or embodied in, a physical product (including a physical distribution medium), accompanied by a written offer, valid for at least three years and valid for as long as you offer spare parts or customer support for that product model, to give anyone who possesses the object code either (1) a copy of the Corresponding Source for all the software in the product that is covered by this License, on a durable physical medium customarily used for software interchange, for a price no more than your reasonable cost of physically performing this conveying of source, or (2) access to copy the Corresponding Source from a network server at no charge. c) Convey individual copies of the object code with a copy of the written offer to provide the Corresponding Source. This alternative is allowed only occasionally and noncommercially, and only if you received the object code with such an offer, in accord with subsection 6b. d) Convey the object code by offering access from a designated place (gratis or for a charge), and offer equivalent access to the Corresponding Source in the same way through the same place at no further charge. You need not require recipients to copy the Corresponding Source along with the object code. If the place to copy the object code is a network server, the Corresponding Source may be on a different server (operated by you or a third party) that supports equivalent copying facilities, provided you maintain clear directions next to the object code saying where to find the Corresponding Source. Regardless of what server hosts the Corresponding Source, you remain obligated to ensure that it is available for as long as needed to satisfy these requirements. e) Convey the object code using peer-to-peer transmission, provided you inform other peers where the object code and Corresponding Source of the work are being offered to the general public at no charge under subsection 6d. A separable portion of the object code, whose source code is excluded from the Corresponding Source as a System Library, need not be included in conveying the object code work. A "User Product" is either (1) a "consumer product", which means any tangible personal property which is normally used for personal, family, or household purposes, or (2) anything designed or sold for incorporation into a dwelling. In determining whether a product is a consumer product, doubtful cases shall be resolved in favor of coverage. For a particular product received by a particular user, "normally used" refers to a typical or common use of that class of product, regardless of the status of the particular user or of the way in which the particular user actually uses, or expects or is expected to use, the product. A product is a consumer product regardless of whether the product has substantial commercial, industrial or non-consumer uses, unless such uses represent the only significant mode of use of the product. "Installation Information" for a User Product means any methods, procedures, authorization keys, or other information required to install and execute modified versions of a covered work in that User Product from a modified version of its Corresponding Source. The information must suffice to ensure that the continued functioning of the modified object code is in no case prevented or interfered with solely because modification has been made. If you convey an object code work under this section in, or with, or specifically for use in, a User Product, and the conveying occurs as part of a transaction in which the right of possession and use of the User Product is transferred to the recipient in perpetuity or for a fixed term (regardless of how the transaction is characterized), the Corresponding Source conveyed under this section must be accompanied by the Installation Information. But this requirement does not apply if neither you nor any third party retains the ability to install modified object code on the User Product (for example, the work has been installed in ROM). The requirement to provide Installation Information does not include a requirement to continue to provide support service, warranty, or updates for a work that has been modified or installed by the recipient, or for the User Product in which it has been modified or installed. Access to a network may be denied when the modification itself materially and adversely affects the operation of the network or violates the rules and protocols for communication across the network. Corresponding Source conveyed, and Installation Information provided, in accord with this section must be in a format that is publicly documented (and with an implementation available to the public in source code form), and must require no special password or key for unpacking, reading or copying. 7. Additional Terms. "Additional permissions" are terms that supplement the terms of this License by making exceptions from one or more of its conditions. Additional permissions that are applicable to the entire Program shall be treated as though they were included in this License, to the extent that they are valid under applicable law. If additional permissions apply only to part of the Program, that part may be used separately under those permissions, but the entire Program remains governed by this License without regard to the additional permissions. When you convey a copy of a covered work, you may at your option remove any additional permissions from that copy, or from any part of it. (Additional permissions may be written to require their own removal in certain cases when you modify the work.) You may place additional permissions on material, added by you to a covered work, for which you have or can give appropriate copyright permission. Notwithstanding any other provision of this License, for material you add to a covered work, you may (if authorized by the copyright holders of that material) supplement the terms of this License with terms: a) Disclaiming warranty or limiting liability differently from the terms of sections 15 and 16 of this License; or b) Requiring preservation of specified reasonable legal notices or author attributions in that material or in the Appropriate Legal Notices displayed by works containing it; or c) Prohibiting misrepresentation of the origin of that material, or requiring that modified versions of such material be marked in reasonable ways as different from the original version; or d) Limiting the use for publicity purposes of names of licensors or authors of the material; or e) Declining to grant rights under trademark law for use of some trade names, trademarks, or service marks; or f) Requiring indemnification of licensors and authors of that material by anyone who conveys the material (or modified versions of it) with contractual assumptions of liability to the recipient, for any liability that these contractual assumptions directly impose on those licensors and authors. All other non-permissive additional terms are considered "further restrictions" within the meaning of section 10. If the Program as you received it, or any part of it, contains a notice stating that it is governed by this License along with a term that is a further restriction, you may remove that term. If a license document contains a further restriction but permits relicensing or conveying under this License, you may add to a covered work material governed by the terms of that license document, provided that the further restriction does not survive such relicensing or conveying. If you add terms to a covered work in accord with this section, you must place, in the relevant source files, a statement of the additional terms that apply to those files, or a notice indicating where to find the applicable terms. Additional terms, permissive or non-permissive, may be stated in the form of a separately written license, or stated as exceptions; the above requirements apply either way. 8. Termination. You may not propagate or modify a covered work except as expressly provided under this License. Any attempt otherwise to propagate or modify it is void, and will automatically terminate your rights under this License (including any patent licenses granted under the third paragraph of section 11). However, if you cease all violation of this License, then your license from a particular copyright holder is reinstated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b) permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days after the cessation. Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies you of the violation by some reasonable means, this is the first time you have received notice of violation of this License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the notice. Termination of your rights under this section does not terminate the licenses of parties who have received copies or rights from you under this License. If your rights have been terminated and not permanently reinstated, you do not qualify to receive new licenses for the same material under section 10. 9. Acceptance Not Required for Having Copies. You are not required to accept this License in order to receive or run a copy of the Program. Ancillary propagation of a covered work occurring solely as a consequence of using peer-to-peer transmission to receive a copy likewise does not require acceptance. However, nothing other than this License grants you permission to propagate or modify any covered work. These actions infringe copyright if you do not accept this License. Therefore, by modifying or propagating a covered work, you indicate your acceptance of this License to do so. 10. Automatic Licensing of Downstream Recipients. Each time you convey a covered work, the recipient automatically receives a license from the original licensors, to run, modify and propagate that work, subject to this License. You are not responsible for enforcing compliance by third parties with this License. An "entity transaction" is a transaction transferring control of an organization, or substantially all assets of one, or subdividing an organization, or merging organizations. If propagation of a covered work results from an entity transaction, each party to that transaction who receives a copy of the work also receives whatever licenses to the work the party's predecessor in interest had or could give under the previous paragraph, plus a right to possession of the Corresponding Source of the work from the predecessor in interest, if the predecessor has it or can get it with reasonable efforts. You may not impose any further restrictions on the exercise of the rights granted or affirmed under this License. For example, you may not impose a license fee, royalty, or other charge for exercise of rights granted under this License, and you may not initiate litigation (including a cross-claim or counterclaim in a lawsuit) alleging that any patent claim is infringed by making, using, selling, offering for sale, or importing the Program or any portion of it. 11. Patents. A "contributor" is a copyright holder who authorizes use under this License of the Program or a work on which the Program is based. The work thus licensed is called the contributor's "contributor version". A contributor's "essential patent claims" are all patent claims owned or controlled by the contributor, whether already acquired or hereafter acquired, that would be infringed by some manner, permitted by this License, of making, using, or selling its contributor version, but do not include claims that would be infringed only as a consequence of further modification of the contributor version. For purposes of this definition, "control" includes the right to grant patent sublicenses in a manner consistent with the requirements of this License. Each contributor grants you a non-exclusive, worldwide, royalty-free patent license under the contributor's essential patent claims, to make, use, sell, offer for sale, import and otherwise run, modify and propagate the contents of its contributor version. In the following three paragraphs, a "patent license" is any express agreement or commitment, however denominated, not to enforce a patent (such as an express permission to practice a patent or covenant not to sue for patent infringement). To "grant" such a patent license to a party means to make such an agreement or commitment not to enforce a patent against the party. If you convey a covered work, knowingly relying on a patent license, and the Corresponding Source of the work is not available for anyone to copy, free of charge and under the terms of this License, through a publicly available network server or other readily accessible means, then you must either (1) cause the Corresponding Source to be so available, or (2) arrange to deprive yourself of the benefit of the patent license for this particular work, or (3) arrange, in a manner consistent with the requirements of this License, to extend the patent license to downstream recipients. "Knowingly relying" means you have actual knowledge that, but for the patent license, your conveying the covered work in a country, or your recipient's use of the covered work in a country, would infringe one or more identifiable patents in that country that you have reason to believe are valid. If, pursuant to or in connection with a single transaction or arrangement, you convey, or propagate by procuring conveyance of, a covered work, and grant a patent license to some of the parties receiving the covered work authorizing them to use, propagate, modify or convey a specific copy of the covered work, then the patent license you grant is automatically extended to all recipients of the covered work and works based on it. A patent license is "discriminatory" if it does not include within the scope of its coverage, prohibits the exercise of, or is conditioned on the non-exercise of one or more of the rights that are specifically granted under this License. You may not convey a covered work if you are a party to an arrangement with a third party that is in the business of distributing software, under which you make payment to the third party based on the extent of your activity of conveying the work, and under which the third party grants, to any of the parties who would receive the covered work from you, a discriminatory patent license (a) in connection with copies of the covered work conveyed by you (or copies made from those copies), or (b) primarily for and in connection with specific products or compilations that contain the covered work, unless you entered into that arrangement, or that patent license was granted, prior to 28 March 2007. Nothing in this License shall be construed as excluding or limiting any implied license or other defenses to infringement that may otherwise be available to you under applicable patent law. 12. No Surrender of Others' Freedom. If conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of this License, they do not excuse you from the conditions of this License. If you cannot convey a covered work so as to satisfy simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not convey it at all. For example, if you agree to terms that obligate you to collect a royalty for further conveying from those to whom you convey the Program, the only way you could satisfy both those terms and this License would be to refrain entirely from conveying the Program. 13. Use with the GNU Affero General Public License. Notwithstanding any other provision of this License, you have permission to link or combine any covered work with a work licensed under version 3 of the GNU Affero General Public License into a single combined work, and to convey the resulting work. The terms of this License will continue to apply to the part which is the covered work, but the special requirements of the GNU Affero General Public License, section 13, concerning interaction through a network will apply to the combination as such. 14. Revised Versions of this License. The Free Software Foundation may publish revised and/or new versions of the GNU General Public License from time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or concerns. Each version is given a distinguishing version number. If the Program specifies that a certain numbered version of the GNU General Public License "or any later version" applies to it, you have the option of following the terms and conditions either of that numbered version or of any later version published by the Free Software Foundation. If the Program does not specify a version number of the GNU General Public License, you may choose any version ever published by the Free Software Foundation. If the Program specifies that a proxy can decide which future versions of the GNU General Public License can be used, that proxy's public statement of acceptance of a version permanently authorizes you to choose that version for the Program. Later license versions may give you additional or different permissions. However, no additional obligations are imposed on any author or copyright holder as a result of your choosing to follow a later version. 15. Disclaimer of Warranty. THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 16. Limitation of Liability. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES. 17. Interpretation of Sections 15 and 16.
#!/usr/bin/env python
# Copyright (c) 2019, Anthony Latorre <tlatorre at uchicago>
#
# This program is free software: you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the Free
# Software Foundation, either version 3 of the License, or (at your option)
# any later version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
# more details.
#
# You should have received a copy of the GNU General Public License along with
# this program. If not, see <https://www.gnu.org/licenses/>.
"""
Script to do final dark matter search analysis. To run it just run:

    $ ./dm-search [list of data fit results] --mc [list of atmospheric MC files] --muon-mc [list of muon MC files] --steps [steps]

After running you will get a plot showing the limits for back to back dark
matter at a range of energies.
"""
from __future__ import print_function, division
import numpy as np
from scipy.stats import iqr, poisson
from matplotlib.lines import Line2D
from scipy.stats import iqr, norm, beta, percentileofscore
from scipy.special import spence
from sddm.stats import *
from sddm.dc import estimate_errors, EPSILON, truncnorm_scaled
import emcee
from sddm import printoptions
from sddm.utils import fast_cdf, correct_energy_bias
from scipy.integrate import quad
from sddm.dm import *
from sddm import SNOMAN_MASS, AV_RADIUS
import nlopt
from itertools import chain

# Likelihood Fit Parameters
# 0 - Atmospheric Neutrino Flux Scale
# 1 - Electron energy bias
# 2 - Electron energy resolution
# 3 - Muon energy bias
# 4 - Muon energy resolution
# 5 - External Muon scale
# 6 - Dark Matter Scale

# Number of events to use in the dark matter Monte Carlo histogram when fitting
# Ideally this would be as big as possible, but the bigger it is, the more time
# the fit takes.
DM_SAMPLES = 10000

DM_MASSES = {2020: np.logspace(np.log10(22),np.log10(1e3),101),
             2222: np.logspace(np.log10(318),np.log10(1e3),101)}

DISCOVERY_P_VALUE = 0.05

FIT_PARS = [
    'Atmospheric Neutrino Flux Scale',
    'Electron energy bias',
    'Electron energy resolution',
    'Muon energy bias',
    'Muon energy resolution',
    'External Muon scale',
    'Dark Matter Scale']

# Uncertainty on the energy scale
#
# - the muon energy scale and resolution terms come directly from measurements
#   on stopping muons, so those are known well.
# - for electrons, we only have Michel electrons at the low end of our energy
#   range, and therefore we don't really have any good way of constraining the
#   energy scale or resolution. However, if we assume that the ~7% energy bias
#   in the muons is from the single PE distribution (it seems likely to me that
#   that is a major part of the bias), then the energy scale should be roughly
#   the same. Since the Michel electron distributions are consistent, we leave
#   the mean value at 0, but to be conservative, we set the error to 10%.
# - The energy resolution for muons was pretty much spot on, and so we expect
#   the same from electrons. In addition, the Michel spectrum is consistent so
#   at that energy level we don't see anything which leads us to expect a major
#   difference. To be conservative, and because I don't think it really affects
#   the analysis at all, I'll leave the uncertainty here at 10% anyways.
PRIORS = [
    1.0,   # Atmospheric Neutrino Scale
    0.015, # Electron energy scale
    0.0,   # Electron energy resolution
    0.053, # Muon energy scale
    0.0,   # Muon energy resolution
    0.0,   # Muon scale
    0.0,   # Dark Matter Scale
]

PRIOR_UNCERTAINTIES = [
    0.2,   # Atmospheric Neutrino Scale
    0.03,  # Electron energy scale
    0.05,  # Electron energy resolution
    0.01,  # Muon energy scale
    0.013, # Muon energy resolution
    10.0,  # Muon scale
    np.inf,# Dark Matter Scale
]

# Lower bounds for the fit parameters
PRIORS_LOW = [
    EPSILON,
    -10,
    EPSILON,
    -10,
    EPSILON,
    0,
    0,
]

# Upper bounds for the fit parameters
PRIORS_HIGH = [
    10,
    10,
    10,
    10,
    10,
    1e9,
    1000,
]

particle_id = {20: 'e', 22: r'\mu'}

def plot_hist2(hists, bins, color=None):
    for id in (20,22,2020,2022,2222):
        if id == 20:
            plt.subplot(2,3,1)
        elif id == 22:
            plt.subplot(2,3,2)
        elif id == 2020:
            plt.subplot(2,3,4)
        elif id == 2022:
            plt.subplot(2,3,5)
        elif id == 2222:
            plt.subplot(2,3,6)

        bincenters = (bins[id][1:] + bins[id][:-1])/2
        plt.hist(bincenters, bins=bins[id], histtype='step', weights=hists[id],color=color)
        plt.gca().set_xscale("log")
        major = np.array([10,100,1000,10000])
        minor = np.unique(list(chain(*list(range(i,i*10,i) for i in major[:-1]))))
        minor = np.setdiff1d(minor,major)
        major = major[major <= bins[id][-1]]
        minor = minor[minor <= bins[id][-1]]
        plt.gca().set_xticks(major)
        plt.gca().set_xticks(minor,minor=True)
        plt.gca().set_xlim(10,10000)
        plt.xlabel("Energy (MeV)")
        plt.title('$' + ''.join([particle_id[int(''.join(x))] for x in grouper(str(id),2)]) + '$')

    if len(hists):
        plt.tight_layout()

def get_mc_hists(data,x,bins,scale=1.0,reweight=False):
    """
    Returns the expected Monte Carlo histograms for the atmospheric neutrino
    background.

    Args:
        - data: pandas dataframe of the Monte Carlo events
        - x: fit parameters
        - bins: histogram bins
        - scale: multiply histograms by an overall scale factor

    This function does two basic things:

        1. apply the energy bias and resolution corrections
        2. histogram the results

    Returns a dictionary mapping particle id combo -> histogram.
    """
    df_dict = {}
    for id in (20,22,2020,2022,2222):
        df_dict[id] = data[data.id == id]

    return get_mc_hists_fast(df_dict,x,bins,scale,reweight)

def get_mc_hists_fast(df_dict,x,bins,scale=1.0,reweight=False):
    """
    Same as get_mc_hists() but the first argument is a dictionary mapping
    particle id -> dataframe. This is much faster than selecting the events
    from the dataframe every time.
    """
    mc_hists = {}

    for id in (20,22,2020,2022,2222):
        df = df_dict[id]

        if id == 20:
            ke = df.energy1.values*(1+x[1])
            resolution = df.energy1.values*max(EPSILON,x[2])
        elif id == 2020:
            ke = df.energy1.values*(1+x[1]) + df.energy2.values*(1+x[1])
            resolution = np.sqrt((df.energy1.values*max(EPSILON,x[2]))**2 + (df.energy2.values*max(EPSILON,x[2]))**2)
        elif id == 22:
            ke = df.energy1.values*(1+x[3])
            resolution = df.energy1.values*max(EPSILON,x[4])
        elif id == 2222:
            ke = df.energy1.values*(1+x[3]) + df.energy2.values*(1+x[3])
            resolution = np.sqrt((df.energy1.values*max(EPSILON,x[4]))**2 + (df.energy2.values*max(EPSILON,x[4]))**2)
        elif id == 2022:
            ke = df.energy1.values*(1+x[1]) + df.energy2.values*(1+x[3])
            resolution = np.sqrt((df.energy1.values*max(EPSILON,x[2]))**2 + (df.energy2.values*max(EPSILON,x[4]))**2)

        if reweight:
            cdf = fast_cdf(bins[id][:,np.newaxis],ke,resolution)*df.weight.values
        else:
            cdf = fast_cdf(bins[id][:,np.newaxis],ke,resolution)

        if 'flux_weight' in df.columns:
            cdf *= df.flux_weight.values

        mc_hists[id] = np.sum(cdf[1:] - cdf[:-1],axis=-1)
        mc_hists[id] *= scale
    return mc_hists

def get_data_hists(data,bins,scale=1.0):
    """
    Returns the data histogrammed into `bins`.
    """
    data_hists = {}
    for id in (20,22,2020,2022,2222):
        data_hists[id] = np.histogram(data[data.id == id].ke.values,bins=bins[id])[0]*scale
    return data_hists

def make_nll(dm_particle_id, dm_mass, dm_energy, data, muons, mc, atmo_scale_factor, muon_scale_factor, bins, reweight=False, print_nll=False, dm_sample=None):
    df_dict = dict(tuple(mc.groupby('id')))
    for id in (20,22,2020,2022,2222):
        if id not in df_dict:
            df_dict[id] = mc.iloc[:0]

    df_dict_muon = dict(tuple(muons.groupby('id')))
    for id in (20,22,2020,2022,2222):
        if id not in df_dict_muon:
            df_dict_muon[id] = muons.iloc[:0]

    data_hists = get_data_hists(data,bins)

    if dm_sample is None:
        dm_sample = get_dm_sample(DM_SAMPLES,dm_particle_id,dm_mass,dm_energy)

    df_dict_dm = {}
    for id in (20,22,2020,2022,2222):
        df_dict_dm[id] = dm_sample[dm_sample.id == id]

    def nll(x, grad=None):
        if (x < PRIORS_LOW).any() or (x > PRIORS_HIGH).any():
            return np.inf

        # Get the Monte Carlo histograms. We need to do this within the
        # likelihood function since we apply the energy resolution parameters
        # to the Monte Carlo.
        mc_hists = get_mc_hists_fast(df_dict,x,bins,scale=1/atmo_scale_factor,reweight=reweight)
        muon_hists = get_mc_hists_fast(df_dict_muon,x,bins,scale=1/muon_scale_factor)
        dm_hists = get_mc_hists_fast(df_dict_dm,x,bins,scale=1/len(dm_sample))

        # Calculate the negative log of the likelihood of observing the data
        # given the fit parameters

        nll = 0
        for id in data_hists:
            oi = data_hists[id]
            ei = mc_hists[id]*x[0] + muon_hists[id]*x[5] + dm_hists[id]*x[6] + EPSILON 
            N = ei.sum()
            nll -= -N - np.sum(gammaln(oi+1)) + np.sum(oi*np.log(ei))

        # Add the priors
        nll -= norm.logpdf(x[:6],PRIORS[:6],PRIOR_UNCERTAINTIES[:6]).sum()

        if print_nll:
            # Print the result
            print("nll = %.2f" % nll)

        return nll
    return nll

def do_fit(dm_particle_id,dm_mass,dm_energy,data,muon,data_mc,weights,atmo_scale_factor,muon_scale_factor,bins,steps,print_nll=False,walkers=100,thin=10,refit=True):
    """
    Run the fit and return the minimum along with samples from running an MCMC
    starting near the minimum.

    Args:
        - data: pandas dataframe representing the data to fit
        - muon: pandas dataframe representing the expected background from
                external muons
        - data_mc: pandas dataframe representing the expected background from
                   atmospheric neutrino events
        - weights: pandas dataframe with the GENIE weights
        - bins: an array of bins to use for the fit
        - steps: the number of MCMC steps to run

    Returns a tuple (xopt, samples) where samples is an array of shape (steps,
    number of parameters).
    """
    dm_sample = get_dm_sample(DM_SAMPLES,dm_particle_id,dm_mass,dm_energy)

    nll = make_nll(dm_particle_id,dm_mass,dm_energy,data,muon,data_mc,atmo_scale_factor,muon_scale_factor,bins,print_nll,dm_sample=dm_sample)

    pos = np.empty((walkers, len(PRIORS)),dtype=np.double)
    for i in range(pos.shape[0]):
        pos[i] = sample_priors()

    nwalkers, ndim = pos.shape

    # We use the KDEMove here because I think it should sample the likelihood
    # better. Because we have energy scale parameters and we are doing a binned
    # likelihood, the likelihood is discontinuous. There can also be several
    # local minima. The author of emcee recommends using the KDEMove with a lot
    # of workers to try and properly sample a multimodal distribution. In
    # addition, I've found that the autocorrelation time for the KDEMove is
    # much better than the other moves.
    sampler = emcee.EnsembleSampler(nwalkers, ndim, lambda x: -nll(x), moves=emcee.moves.KDEMove())
    with np.errstate(invalid='ignore'):
        sampler.run_mcmc(pos, steps)

    print("Mean acceptance fraction: {0:.3f}".format(np.mean(sampler.acceptance_fraction)))

    try:
        print("autocorrelation time: ", sampler.get_autocorr_time(quiet=True))
    except Exception as e:
        print(e)

    samples = sampler.get_chain(flat=True,thin=thin)

    # Now, we use nlopt to find the best set of parameters. We start at the
    # best starting point from the MCMC and then run the SBPLX routine.
    x0 = sampler.get_chain(flat=True)[sampler.get_log_prob(flat=True).argmax()]
    opt = nlopt.opt(nlopt.LN_SBPLX, len(x0))
    opt.set_min_objective(nll)
    low = np.array(PRIORS_LOW)
    high = np.array(PRIORS_HIGH)
    if refit:
        # If we are refitting, we want to do the first fit assuming no dark
        # matter to make sure we get the best GENIE systematics for the null
        # hypothesis.
        x0[6] = low[6]
        high[6] = low[6]
    opt.set_lower_bounds(low)
    opt.set_upper_bounds(high)
    opt.set_ftol_abs(1e-10)
    opt.set_initial_step([0.01]*len(x0))
    xopt = opt.optimize(x0)

    # Get the total number of "universes" simulated in the GENIE reweight tool
    nuniverses = max(weights.keys())+1

    nlls = []
    for universe in range(nuniverses):
        data_mc_with_weights = pd.merge(data_mc,weights[universe],how='left',on=['run','unique_id'])
        data_mc_with_weights.weight = data_mc_with_weights.weight.fillna(1.0)

        nll = make_nll(dm_particle_id,dm_mass,dm_energy,data,muon,data_mc_with_weights,atmo_scale_factor,muon_scale_factor,bins,reweight=True,print_nll=print_nll,dm_sample=dm_sample)
        nlls.append(nll(xopt))

    universe = np.argmin(nlls)

    if refit:
        data_mc_with_weights = pd.merge(data_mc,weights[universe],how='left',on=['run','unique_id'])
        data_mc_with_weights.weight = data_mc_with_weights.weight.fillna(1.0)

        # Create a new negative log likelihood function with the weighted Monte Carlo.
        nll = make_nll(dm_particle_id,dm_mass,dm_energy,data,muon,data_mc_with_weights,atmo_scale_factor,muon_scale_factor,bins,reweight=True,print_nll=print_nll,dm_sample=dm_sample)

        # Now, we refit with the Monte Carlo weighted by the most likely GENIE
        # systematics.
        pos = np.empty((walkers, len(PRIORS)),dtype=np.double)
        for i in range(pos.shape[0]):
            pos[i] = sample_priors()

        nwalkers, ndim = pos.shape

        # We use the KDEMove here because I think it should sample the likelihood
        # better. Because we have energy scale parameters and we are doing a binned
        # likelihood, the likelihood is discontinuous. There can also be several
        # local minima. The author of emcee recommends using the KDEMove with a lot
        # of workers to try and properly sample a multimodal distribution. In
        # addition, I've found that the autocorrelation time for the KDEMove is
        # much better than the other moves.
        sampler = emcee.EnsembleSampler(nwalkers, ndim, lambda x: -nll(x), moves=emcee.moves.KDEMove())
        with np.errstate(invalid='ignore'):
            sampler.run_mcmc(pos, steps)

        print("Mean acceptance fraction: {0:.3f}".format(np.mean(sampler.acceptance_fraction)))

        try:
            print("autocorrelation time: ", sampler.get_autocorr_time(quiet=True))
        except Exception as e:
            print(e)

        samples = sampler.get_chain(flat=True,thin=thin)

        # Now, we use nlopt to find the best set of parameters. We start at the
        # best starting point from the MCMC and then run the SBPLX routine.
        x0 = sampler.get_chain(flat=True)[sampler.get_log_prob(flat=True).argmax()]
        opt = nlopt.opt(nlopt.LN_SBPLX, len(x0))
        opt.set_min_objective(nll)
        low = np.array(PRIORS_LOW)
        high = np.array(PRIORS_HIGH)
        opt.set_lower_bounds(low)
        opt.set_upper_bounds(high)
        opt.set_ftol_abs(1e-10)
        opt.set_initial_step([0.01]*len(x0))
        xopt = opt.optimize(x0)

    return xopt, universe, samples

def sample_priors():
    """
    Returns a random sample of the fit parameters from the priors. For the
    first 6 parameters we use a truncated normal distribution, and for the last
    parameter we use a uniform distribution.
    """
    return np.concatenate((truncnorm_scaled(PRIORS_LOW[:6],PRIORS_HIGH[:6],PRIORS[:6],PRIOR_UNCERTAINTIES[:6]),[np.random.uniform(PRIORS_LOW[6],PRIORS_HIGH[6])]))

def get_dm_sample(n,dm_particle_id,dm_mass,dm_energy):
    """
    Returns a dataframe containing events from a dark matter particle.

    Args:

        - n: int
            number of events
        - dm_particle_id: int
            the particle id of the DM particle (2020 or 2222)
        - dm_energy: float
            The total kinetic energy of the DM particle
        - dm_resolution: float
            The fractional energy resolution of the dark matter particle, i.e.
            the actual energy resolution will be dm_energy*dm_resolution.
    """
    id1 = dm_particle_id//100
    id2 = dm_particle_id % 100
    m1 = SNOMAN_MASS[id1]
    m2 = SNOMAN_MASS[id2]
    energy1 = []
    data = np.empty(n,dtype=[('energy1',np.double),('energy2',np.double),('ke',np.double),('id1',np.int),('id2',np.int),('id',np.int)])
    for i, (v1, v2) in enumerate(islice(gen_decay(dm_mass,dm_energy,m1,m2),n)):
        E1 = v1[0]
        E2 = v2[0]
        T1 = E1 - m1
        T2 = E2 - m2
        data[i] = T1, T2, T1 + T2, id1, id2, dm_particle_id

    # FIXME: Get electron and muon resolution
    data['energy1'] += norm.rvs(scale=data['energy1']*0.05)
    data['energy2'] += norm.rvs(scale=data['energy2']*0.05)

    return pd.DataFrame(data)

def get_limits(dm_masses,data,muon,data_mc,atmo_scale_factor,muon_scale_factor,bins,steps,print_nll,walkers,thin):
    limits = {}
    best_fit = {}
    discovery_array = {}
    for dm_particle_id in (2020,2222):
        limits[dm_particle_id] = np.empty(len(dm_masses[dm_particle_id]))
        best_fit[dm_particle_id] = np.empty(len(dm_masses[dm_particle_id]))
        discovery_array[dm_particle_id] = np.empty(len(dm_masses[dm_particle_id]))
        for i, dm_mass in enumerate(dm_masses[dm_particle_id]):
            id1 = dm_particle_id//100
            id2 = dm_particle_id % 100
            m1 = SNOMAN_MASS[id1]
            m2 = SNOMAN_MASS[id2]
            dm_energy = dm_mass
            xopt, universe, samples = do_fit(dm_particle_id,dm_mass,dm_energy,data,muon,data_mc,weights,atmo_scale_factor,muon_scale_factor,bins,steps,print_nll,walkers,thin)

            data_mc_with_weights = pd.merge(data_mc,weights[universe],how='left',on=['run','unique_id'])
            data_mc_with_weights.weight = data_mc_with_weights.weight.fillna(1.0)

            limit = np.percentile(samples[:,6],90)
            limits[dm_particle_id][i] = limit

            # Here, to determine if there is a discovery we make an approximate
            # calculation of the number of events which would be significant.
            #
            # We expect the likelihood to be approximately that of a Poisson
            # distribution with n background events and we are searching for a
            # signal s. n is constrained by the rest of the histograms, and so
            # we can treat is as being approximately fixed. In this case, the
            # likelihood looks approximately like:
            #
            #     P(s) = e^(-(s+n))(s+n)**i/i!
            #
            # Where i is the actual number of events. Under the null hypothesis
            # (i.e. no dark matter), we expect i to be Poisson distributed with
            # mean n. Therefore s should have the same distribution but offset
            # by n. Therefore, to determine the threshold, we simply look for
            # the threshold we expect in n and then subtract n.
            dm_kinetic_energy = dm_energy - m1 - m2

            dm_sample = get_dm_sample(DM_SAMPLES,dm_particle_id,dm_mass,dm_energy)

            # To calculate `n` we approximately want the number of events in
            # the bin which most of the dark matter events will fall. However,
            # to smoothly transition between bins, we multiply the normalized
            # dark matter histogram with the expected MC histogram and then
            # take the sum. In the case that the dark matter events all fall
            # into a single bin, this gives us that bin, but smoothly
            # interpolates between the bins.
            dm_hists = get_mc_hists(dm_sample,xopt,bins,scale=1/len(dm_sample))
            frac = dm_hists[dm_particle_id].sum()
            dm_hists[dm_particle_id] /= frac
            mc_hists = get_mc_hists(data_mc_with_weights,xopt,bins,scale=xopt[0]/atmo_scale_factor,reweight=True)
            muon_hists = get_mc_hists(muon,xopt,bins,scale=xopt[5]/muon_scale_factor)
            n = (dm_hists[dm_particle_id]*(mc_hists[dm_particle_id] + muon_hists[dm_particle_id])).sum()
            # Set our discovery threshold to the p-value we want divided by the
            # number of bins. The idea here is that the number of bins is
            # approximately equal to the number of trials so we need to
            # increase our discovery threshold to account for the look
            # elsewhere effect.
            threshold = DISCOVERY_P_VALUE/(len(bins[dm_particle_id])-1)
            discovery = poisson.ppf(1-threshold,n) + 1 - n
            # Here, we scale the discovery threshold by the fraction of the
            # dark matter hist in the histogram range. The idea is that if only
            # a small fraction of the dark matter histogram falls into the
            # histogram range, the total number of dark matter events returned
            # by the fit can be larger by this amount. I noticed this when
            # testing under the null hypothesis that the majority of the
            # "discoveries" were on the edge of the histogram.
            discovery_array[dm_particle_id][i] = discovery/frac
            best_fit[dm_particle_id][i] = xopt[6]

    return limits, best_fit, discovery_array

if __name__ == '__main__':
    import argparse
    import numpy as np
    import pandas as pd
    import sys
    import h5py
    from sddm.plot_energy import *
    from sddm.plot import *
    from sddm import setup_matplotlib
    import nlopt
    from sddm.renormalize import *

    parser = argparse.ArgumentParser("plot fit results")
    parser.add_argument("filenames", nargs='+', help="input files")
    parser.add_argument("--save", action='store_true', default=False, help="save corner plots for backgrounds")
    parser.add_argument("--mc", nargs='+', required=True, help="atmospheric MC files")
    parser.add_argument("--muon-mc", nargs='+', required=True, help="muon MC files")
    parser.add_argument("--nhit-thresh", type=int, default=None, help="nhit threshold to apply to events before processing (should only be used for testing to speed things up)")
    parser.add_argument("--steps", type=int, default=1000, help="number of steps in the MCMC chain")
    parser.add_argument("--pull", type=int, default=0, help="plot pull plots")
    parser.add_argument("--weights", nargs='+', required=True, help="GENIE reweight HDF5 files")
    parser.add_argument("--print-nll", action='store_true', default=False, help="print nll values")
    parser.add_argument("--walkers", type=int, default=100, help="number of walkers")
    parser.add_argument("--thin", type=int, default=10, help="number of steps to thin")
    parser.add_argument("--test", type=int, default=0, help="run tests to check discovery threshold")
    parser.add_argument("--run-list", default=None, help="run list")
    parser.add_argument("--mcpl", nargs='+', required=True, help="GENIE MCPL files")
    parser.add_argument("--run-info", required=True, help="run_info.log autosno file")
    args = parser.parse_args()

    setup_matplotlib(args.save)

    import matplotlib.pyplot as plt

    rhdr = pd.concat([read_hdf(filename, "rhdr").assign(filename=filename) for filename in args.filenames],ignore_index=True)

    if args.run_list is not None:
        run_list = np.genfromtxt(args.run_list)
        rhdr = rhdr[rhdr.run.isin(run_list)]

    # Loop over runs to prevent using too much memory
    evs = []
    for run, df in rhdr.groupby('run'):
        evs.append(get_events(df.filename.values, merge_fits=True, nhit_thresh=args.nhit_thresh))
    ev = pd.concat(evs).reset_index()

    livetime = 0.0
    livetime_pulse_gt = 0.0
    for _ev in evs:
        if not np.isnan(_ev.attrs['time_10_mhz']):
            livetime += _ev.attrs['time_10_mhz']
        else:
            livetime += _ev.attrs['time_pulse_gt']
        livetime_pulse_gt += _ev.attrs['time_pulse_gt']

    print("livetime            = %.2f" % livetime)
    print("livetime (pulse gt) = %.2f" % livetime_pulse_gt)

    if args.run_info:
        livetime_run_info = 0.0
        run_info = np.genfromtxt(args.run_info,usecols=range(4),dtype=(np.int,np.int,np.double,np.double))
        for run in set(ev.run.values):
            for i in range(run_info.shape[0]):
                if run_info[i][0] == run:
                    livetime_run_info += run_info[i][3]
        print("livetime (run info) = %.2f" % livetime_run_info)

    ev = correct_energy_bias(ev)

    # Note: We loop over the MC filenames here instead of just passing the
    # whole list to get_events() because I had to rerun some of the MC events
    # using SNOMAN and so most of the runs actually have two different files
    # and otherwise the GTIDs will clash
    ev_mcs = []
    for filename in args.mc:
        ev_mcs.append(get_events([filename], merge_fits=True, nhit_thresh=args.nhit_thresh, mc=True))
    ev_mc = pd.concat([ev_mc for ev_mc in ev_mcs if len(ev_mc) > 0]).reset_index()

    if (~rhdr.run.isin(ev_mc.run)).any():
        print_warning("Error! The following runs have no Monte Carlo: %s" % \
            np.unique(rhdr.run[~rhdr.run.isin(ev_mc.run)].values))

    muon_mc = get_events(args.muon_mc, merge_fits=True, nhit_thresh=args.nhit_thresh, mc=True)
    weights = pd.concat([read_hdf(filename, "weights") for filename in args.weights],ignore_index=True)

    # Add the "flux_weight" column to the ev_mc data since I stupidly simulated
    # the muon neutrino flux for the tau neutrino flux in GENIE. Doh!
    mcpl = load_mcpl_files(args.mcpl)
    ev_mc = renormalize_data(ev_mc,mcpl)

    # Merge weights with MCPL dataframe to get the unique id column in the
    # weights dataframe since that is what we use to merge with the Monte
    # Carlo.
    weights = pd.merge(weights,mcpl[['run','evn','unique_id']],on=['run','evn'],how='left')

    # There are a handful of weights which turn out to be slightly negative for
    # some reason. For example:
    #
    # run  evn  universe    weight
    # 10970   25       597 -0.000055
    # 11389   87       729 -0.021397
    # 11701  204         2 -0.000268
    # 11919  120        82 -0.002245
    # 11976  163        48 -0.000306
    # 11976  163       710 -0.000022
    # 12131   76       175 -0.000513
    # 12207   70       255 -0.002925
    # 12207   70       282 -0.014856
    # 12207   70       368 -0.030593
    # 12207   70       453 -0.019011
    # 12207   70       520 -0.020748
    # 12207   70       834 -0.028754
    # 12207   70       942 -0.020309
    # 12233  230       567 -0.000143
    # 12618  168       235 -0.000020
    # 13428  128        42 -0.083639
    # 14264   23       995 -0.017637
    # 15034   69       624 -0.000143
    # 15752  154       957 -0.006827
    weights = weights[weights.weight > 0]

    weights = dict(tuple(weights.groupby('universe')))

    ev_mc = correct_energy_bias(ev_mc)
    muon_mc = correct_energy_bias(muon_mc)

    # Set all prompt events in the MC to be muons
    muon_mc.loc[muon_mc.prompt,'muon'] = True

    # 00-orphan cut
    ev = ev[(ev.gtid & 0xff) != 0]
    ev_mc = ev_mc[(ev_mc.gtid & 0xff) != 0]
    muon_mc = muon_mc[(muon_mc.gtid & 0xff) != 0]

    # remove events 200 microseconds after a muon
    ev = ev.groupby('run',group_keys=False).apply(muon_follower_cut)

    # Get rid of events which don't have a successful fit
    ev = ev[~np.isnan(ev.fmin)]
    ev_mc = ev_mc[~np.isnan(ev_mc.fmin)]
    muon_mc = muon_mc[~np.isnan(muon_mc.fmin)]

    # require (r < av radius)
    ev = ev[ev.r < AV_RADIUS]
    ev_mc = ev_mc[ev_mc.r < AV_RADIUS]
    muon_mc = muon_mc[muon_mc.r < AV_RADIUS]

    fiducial_volume = (4/3)*np.pi*(AV_RADIUS)**3

    # require psi < 6
    ev = ev[ev.psi < 6]
    ev_mc = ev_mc[ev_mc.psi < 6]
    muon_mc = muon_mc[muon_mc.psi < 6]

    data = ev[ev.signal & ev.prompt & ~ev.atm]
    data_atm = ev[ev.signal & ev.prompt & ev.atm]

    # Right now we use the muon Monte Carlo in the fit. If you want to use the
    # actual data, you can comment the next two lines and then uncomment the
    # two after that.
    muon = muon_mc[muon_mc.muon & muon_mc.prompt & ~muon_mc.atm]
    muon_atm = muon_mc[muon_mc.muon & muon_mc.prompt & muon_mc.atm]
    #muon = ev[ev.muon & ev.prompt & ~ev.atm]
    #muon_atm = ev[ev.muon & ev.prompt & ev.atm]

    if not args.pull and not args.test:
        ev_mc = ev_mc[ev_mc.run.isin(rhdr.run)]

    data_mc = ev_mc[ev_mc.signal & ev_mc.prompt & ~ev_mc.atm]
    data_atm_mc = ev_mc[ev_mc.signal & ev_mc.prompt & ev_mc.atm]

    bins = {20:np.logspace(np.log10(20),np.log10(10e3),21),
            22:np.logspace(np.log10(20),np.log10(10e3),21)[:-5],
            2020:np.logspace(np.log10(20),np.log10(10e3),21),
            2022:np.logspace(np.log10(20),np.log10(10e3),21)[:-5],
            2222:np.logspace(np.log10(20),np.log10(10e3),21)[:-5]}

    atmo_scale_factor = 100.0
    muon_scale_factor = len(muon) + len(muon_atm)

    if args.pull:
        pull = [[] for i in range(len(FIT_PARS))]

        # Set the random seed so we get reproducible results here
        np.random.seed(0)

        for i in range(args.pull):
            xtrue = sample_priors()

            # Calculate expected number of events
            N = len(data_mc)*xtrue[0]/atmo_scale_factor
            N_atm = len(data_atm_mc)*xtrue[0]/atmo_scale_factor
            N_muon = len(muon)*xtrue[5]/muon_scale_factor
            N_muon_atm = len(muon_atm)*xtrue[5]/muon_scale_factor
            N_dm = xtrue[6]

            # Calculate observed number of events
            n = np.random.poisson(N)
            n_atm = np.random.poisson(N_atm)
            n_muon = np.random.poisson(N_muon)
            n_muon_atm = np.random.poisson(N_muon_atm)
            n_dm = np.random.poisson(N_dm)

            dm_particle_id = np.random.choice([2020,2222])
            dm_mass = np.random.uniform(20,10e3)
            dm_energy = dm_mass

            # Sample data from Monte Carlo
            data = pd.concat((data_mc.sample(n=n,weights='flux_weight',replace=True), muon.sample(n=n_muon,replace=True)))
            data_atm = pd.concat((data_atm_mc.sample(n=n_atm,weights='flux_weight',replace=True), muon_atm.sample(n=n_muon_atm,replace=True)))

            # Smear the energies by the additional energy resolution
            data.loc[data.id1 == 20,'energy1'] *= (1+xtrue[1]+np.random.randn(np.count_nonzero(data.id1 == 20))*xtrue[2])
            data.loc[data.id1 == 22,'energy1'] *= (1+xtrue[3]+np.random.randn(np.count_nonzero(data.id1 == 22))*xtrue[4])
            data.loc[data.id2 == 20,'energy2'] *= (1+xtrue[1]+np.random.randn(np.count_nonzero(data.id2 == 20))*xtrue[2])
            data.loc[data.id2 == 22,'energy2'] *= (1+xtrue[3]+np.random.randn(np.count_nonzero(data.id2 == 22))*xtrue[4])
            data['ke'] = data['energy1'].fillna(0) + data['energy2'].fillna(0) + data['energy3'].fillna(0)

            data_atm.loc[data_atm.id1 == 20,'energy1'] *= (1+xtrue[1]+np.random.randn(np.count_nonzero(data_atm.id1 == 20))*xtrue[2])
            data_atm.loc[data_atm.id1 == 22,'energy1'] *= (1+xtrue[3]+np.random.randn(np.count_nonzero(data_atm.id1 == 22))*xtrue[4])
            data_atm.loc[data_atm.id2 == 20,'energy2'] *= (1+xtrue[1]+np.random.randn(np.count_nonzero(data_atm.id2 == 20))*xtrue[2])
            data_atm.loc[data_atm.id2 == 22,'energy2'] *= (1+xtrue[3]+np.random.randn(np.count_nonzero(data_atm.id2 == 22))*xtrue[4])
            data_atm['ke'] = data_atm['energy1'].fillna(0) + data_atm['energy2'].fillna(0) + data_atm['energy3'].fillna(0)

            xopt, universe, samples = do_fit(dm_particle_id,dm_mass,dm_energy,data,muon,data_mc,weights,atmo_scale_factor,muon_scale_factor,bins,args.steps,args.print_nll,args.walkers,args.thin,refit=False)

            for i in range(len(FIT_PARS)):
                # The "pull plots" we make here are actually produced via a
                # procedure called "Simulation Based Calibration".
                #
                # See https://arxiv.org/abs/1804.06788.
                pull[i].append(percentileofscore(samples[:,i],xtrue[i]))

        fig = plt.figure()
        axes = []
        for i, name in enumerate(FIT_PARS):
            axes.append(plt.subplot(4,2,i+1))
            n, bins, patches = plt.hist(pull[i],bins=np.linspace(0,100,11),histtype='step')
            expected = len(pull[i])/(len(bins)-1)
            plt.axhline(expected,color='k',ls='--',alpha=0.25)
            plt.axhspan(poisson.ppf(0.005,expected), poisson.ppf(0.995,expected), facecolor='0.5', alpha=0.25)
            plt.title(name)
        for ax in axes:
            despine(ax=ax,left=True,trim=True)
            ax.get_yaxis().set_visible(False)
        plt.tight_layout()

        if args.save:
            fig.savefig("dm_search_pull_plot.pdf")
            fig.savefig("dm_search_pull_plot.eps")
        else:
            plt.show()

        sys.exit(0)

    if args.test:
        # Set the random seed so we get reproducible results here
        np.random.seed(0)

        data_mc_with_weights = pd.merge(data_mc,weights[0],how='left',on=['run','unique_id'])
        data_atm_mc_with_weights = pd.merge(data_atm_mc,weights[0],how='left',on=['run','unique_id'])

        discoveries = 0

        data_mc_with_weights.weight *= data_mc_with_weights.flux_weight
        data_atm_mc_with_weights.weight *= data_atm_mc_with_weights.flux_weight

        for i in range(args.test):
            xtrue = sample_priors()

            # Calculate expected number of events
            N = len(data_mc)*xtrue[0]/atmo_scale_factor
            N_atm = len(data_atm_mc)*xtrue[0]/atmo_scale_factor
            N_muon = len(muon)*xtrue[5]/muon_scale_factor
            N_muon_atm = len(muon_atm)*xtrue[5]/muon_scale_factor

            # Calculate observed number of events
            n = np.random.poisson(N)
            n_atm = np.random.poisson(N_atm)
            n_muon = np.random.poisson(N_muon)
            n_muon_atm = np.random.poisson(N_muon_atm)

            # Sample data from Monte Carlo
            data = pd.concat((data_mc_with_weights.sample(n=n,replace=True,weights='weight'), muon.sample(n=n_muon,replace=True)))
            data_atm = pd.concat((data_atm_mc_with_weights.sample(n=n_atm,replace=True,weights='weight'), muon_atm.sample(n=n_muon_atm,replace=True)))

            # Smear the energies by the additional energy resolution
            data.loc[data.id1 == 20,'energy1'] *= (1+xtrue[1]+np.random.randn(np.count_nonzero(data.id1 == 20))*xtrue[2])
            data.loc[data.id1 == 22,'energy1'] *= (1+xtrue[3]+np.random.randn(np.count_nonzero(data.id1 == 22))*xtrue[4])
            data.loc[data.id2 == 20,'energy2'] *= (1+xtrue[1]+np.random.randn(np.count_nonzero(data.id2 == 20))*xtrue[2])
            data.loc[data.id2 == 22,'energy2'] *= (1+xtrue[3]+np.random.randn(np.count_nonzero(data.id2 == 22))*xtrue[4])
            data['ke'] = data['energy1'].fillna(0) + data['energy2'].fillna(0) + data['energy3'].fillna(0)

            data_atm.loc[data_atm.id1 == 20,'energy1'] *= (1+xtrue[1]+np.random.randn(np.count_nonzero(data_atm.id1 == 20))*xtrue[2])
            data_atm.loc[data_atm.id1 == 22,'energy1'] *= (1+xtrue[3]+np.random.randn(np.count_nonzero(data_atm.id1 == 22))*xtrue[4])
            data_atm.loc[data_atm.id2 == 20,'energy2'] *= (1+xtrue[1]+np.random.randn(np.count_nonzero(data_atm.id2 == 20))*xtrue[2])
            data_atm.loc[data_atm.id2 == 22,'energy2'] *= (1+xtrue[3]+np.random.randn(np.count_nonzero(data_atm.id2 == 22))*xtrue[4])
            data_atm['ke'] = data_atm['energy1'].fillna(0) + data_atm['energy2'].fillna(0) + data_atm['energy3'].fillna(0)

            limits, best_fit, discovery_array = get_limits(DM_MASSES,data,muon,data_mc,atmo_scale_factor,muon_scale_factor,bins,args.steps,args.print_nll,args.walkers,args.thin)

            for id in (2020,2222):
                if (best_fit[id] > discovery_array[id]).any():
                    discoveries += 1

        print("expected %.2f discoveries" % DISCOVERY_P_VALUE)
        print("actually got %i/%i = %.2f discoveries" % (discoveries,args.test,discoveries/args.test))

        sys.exit(0)

    limits, best_fit, discovery_array = get_limits(DM_MASSES,data,muon,data_mc,atmo_scale_factor,muon_scale_factor,bins,args.steps,args.print_nll,args.walkers,args.thin)

    fig = plt.figure()
    for color, dm_particle_id in zip(('C0','C1'),(2020,2222)):
        plt.plot(DM_MASSES[dm_particle_id],np.array(limits[dm_particle_id])*100**3*3600*24*365/fiducial_volume/livetime,color=color,label='$' + ''.join([particle_id[int(''.join(x))] for x in grouper(str(dm_particle_id),2)]) + '$')
    plt.gca().set_xscale("log")
    despine(fig,trim=True)
    plt.xlabel("Energy (MeV)")
    plt.ylabel("Event Rate Limit (events/$\mathrm{m}^3$/year)")
    plt.legend()
    plt.tight_layout()

    if args.save:
        plt.savefig("dm_search_limit.pdf")
        plt.savefig("dm_search_limit.eps")
    else:
        plt.suptitle("Dark Matter Limits")

    fig = plt.figure()
    for color, dm_particle_id in zip(('C0','C1'),(2020,2222)):
        plt.plot(DM_MASSES[dm_particle_id],best_fit[dm_particle_id],color=color,label='$' + ''.join([particle_id[int(''.join(x))] for x in grouper(str(dm_particle_id),2)]) + '$')
        plt.plot(DM_MASSES[dm_particle_id],discovery_array[dm_particle_id],color=color,ls='--')
    plt.gca().set_xscale("log")
    despine(fig,trim=True)
    plt.xlabel("Energy (MeV)")
    plt.ylabel("Event Rate Limit (events)")
    plt.legend()
    plt.tight_layout()

    if args.save:
        plt.savefig("dm_best_fit_with_discovery_threshold.pdf")
        plt.savefig("dm_best_fit_with_discovery_threshold.eps")
    else:
        plt.suptitle("Best Fit Dark Matter")
        plt.show()