aboutsummaryrefslogtreecommitdiff
path: root/utils/convert-genie-to-gst
blob: bb6ce6b0c716b05b17a8f898f04d0fc265bdf9b7 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
#!/usr/bin/env python
# Copyright (c) 2019, Anthony Latorre <tlatorre at uchicago>
#
# This program is free software: you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the Free
# Software Foundation, either version 3 of the License, or (at your option)
# any later version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
# more details.
#
# You should have received a copy of the GNU General Public License along with
# this program. If not, see <https://www.gnu.org/licenses/>.

from subprocess import check_call
from os.path import split, splitext, join
import os

if __name__ == '__main__':
    import argparse

    parser = argparse.ArgumentParser("script to convert full GENIE root files to the reduced gst ROOT format")
    parser.add_argument("filenames", nargs="+", help="GENIE root files")
    parser.add_argument("--dest", required=True, help="destination directory")
    args = parser.parse_args()

    for filename in args.filenames:
        head, tail = split(filename)
        root, ext = splitext(tail)
        output = join(args.dest, root) + ".ntuple.root"
        cmd = ["gntpc","-f","gst","-i",filename,"-o",output]
        print(" ".join(cmd))
        with open(os.devnull,"w") as devnull:
            check_call(cmd, stdout=devnull, stderr=devnull)
.gi { color: #000000; background-color: #ddffdd } /* Generic.Inserted */ .highlight .go { color: #888888 } /* Generic.Output */ .highlight .gp { color: #555555 } /* Generic.Prompt */ .highlight .gs { font-weight: bold } /* Generic.Strong */ .highlight .gu { color: #666666 } /* Generic.Subheading */ .highlight .gt { color: #aa0000 } /* Generic.Traceback */ .highlight .kc { color: #008800; font-weight: bold } /* Keyword.Constant */ .highlight .kd { color: #008800; font-weight: bold } /* Keyword.Declaration */ .highlight .kn { color: #008800; font-weight: bold } /* Keyword.Namespace */ .highlight .kp { color: #008800 } /* Keyword.Pseudo */ .highlight .kr { color: #008800; font-weight: bold } /* Keyword.Reserved */ .highlight .kt { color: #888888; font-weight: bold } /* Keyword.Type */ .highlight .m { color: #0000DD; font-weight: bold } /* Literal.Number */ .highlight .s { color: #dd2200; background-color: #fff0f0 } /* Literal.String */ .highlight .na { color: #336699 } /* Name.Attribute */ .highlight .nb { color: #003388 } /* Name.Builtin */ .highlight .nc { color: #bb0066; font-weight: bold } /* Name.Class */ .highlight .no { color: #003366; font-weight: bold } /* Name.Constant */ .highlight .nd { color: #555555 } /* Name.Decorator */ .highlight .ne { color: #bb0066; font-weight: bold } /* Name.Exception */ .highlight .nf { color: #0066bb; font-weight: bold } /* Name.Function */ .highlight .nl { color: #336699; font-style: italic } /* Name.Label */ .highlight .nn { color: #bb0066; font-weight: bold } /* Name.Namespace */ .highlight .py { color: #336699; font-weight: bold } /* Name.Property */ .highlight .nt { color: #bb0066; font-weight: bold } /* Name.Tag */ .highlight .nv { color: #336699 } /* Name.Variable */ .highlight .ow { color: #008800 } /* Operator.Word */ .highlight .w { color: #bbbbbb } /* Text.Whitespace */ .highlight .mb { color: #0000DD; font-weight: bold } /* Literal.Number.Bin */ .highlight .mf { color: #0000DD; font-weight: bold } /* Literal.Number.Float */ .highlight .mh { color: #0000DD; font-weight: bold } /* Literal.Number.Hex */ .highlight .mi { color: #0000DD; font-weight: bold } /* Literal.Number.Integer */ .highlight .mo { color: #0000DD; font-weight: bold } /* Literal.Number.Oct */ .highlight .sa { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Affix */ .highlight .sb { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Backtick */ .highlight .sc { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Char */ .highlight .dl { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Delimiter */ .highlight .sd { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Doc */ .highlight .s2 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Double */ .highlight .se { color: #0044dd; background-color: #fff0f0 } /* Literal.String.Escape */ .highlight .sh { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Heredoc */ .highlight .si { color: #3333bb; background-color: #fff0f0 } /* Literal.String.Interpol */ .highlight .sx { color: #22bb22; background-color: #f0fff0 } /* Literal.String.Other */ .highlight .sr { color: #008800; background-color: #fff0ff } /* Literal.String.Regex */ .highlight .s1 { color: #dd2200; background-color: #fff0f0 } /* Literal.String.Single */ .highlight .ss { color: #aa6600; background-color: #fff0f0 } /* Literal.String.Symbol */ .highlight .bp { color: #003388 } /* Name.Builtin.Pseudo */ .highlight .fm { color: #0066bb; font-weight: bold } /* Name.Function.Magic */ .highlight .vc { color: #336699 } /* Name.Variable.Class */ .highlight .vg { color: #dd7700 } /* Name.Variable.Global */ .highlight .vi { color: #3333bb } /* Name.Variable.Instance */ .highlight .vm { color: #336699 } /* Name.Variable.Magic */ .highlight .il { color: #0000DD; font-weight: bold } /* Literal.Number.Integer.Long */
#!/usr/bin/env python
"""
Script to combine the low energy Battistoni atmospheric flux with the high
energy flux from Giles Barr and apply oscillations.

Note: There are a couple of potential issues with this:

1. The Battistoni fluxes give a total flux integrated over the zenith angle
whereas we need to account for the zenith dependence. Therefore, we just use
the zenith dependence of the lowest energy in the Barr flux files.

2. I only have access to the Battistoni fluxes for electron neutrinos.
Therefore I will assume that the muon neutrino flux is twice as big which seems
to be roughly correct based on the paper "The Atmospheric Neutrino Flux Below
100 MeV: The FLUKA Results".

To run it:

    $ ./apply-atmospheric-oscillations --flux-dir ~/atm-production/fluxes/irc01_plus_lowe \
                                       --osc-dir ~/atm-production/nucraft_osc
"""
from __future__ import print_function, division
import numpy as np

def pdg_code_to_string(pdg):
    if pdg == 12:
        return "nue"
    elif pdg == -12:
        return "nbe"
    elif pdg == 14:
        return "num"
    elif pdg == -14:
        return "nbm"
    elif pdg == 16:
        return "nut"
    elif pdg == -16:
        return "nbt"
    else:
        raise ValueError("Unknown pdg code %i" % pdg)

if __name__ == '__main__':
    import argparse
    import matplotlib.pyplot as plt
    from os.path import split, splitext, join
    from scipy.interpolate import RectBivariateSpline
    from scipy.integrate import dblquad, nquad
    import sys

    parser = argparse.ArgumentParser("combine low energy and high energy atmospheric fluxes and apply oscillations")
    parser.add_argument("--flux-dir",required=True,help="atmospheric production directory")
    parser.add_argument("--osc-dir",required=True,help="directory with atmospheric oscillations")
    args = parser.parse_args()

    # Energy and cos(zenith) bins for the fluxes from Barr
    barr_cos_theta_bins = np.linspace(-1,1,21)
    barr_energy_bins = np.logspace(-1,1,41)

    # Final energy bins
    # We go here from 10 MeV -> 10 GeV with 20 points per decade like the Barr
    # fluxes
    energy_bins = np.logspace(-2,1,61)
    cos_theta_bins = barr_cos_theta_bins.copy()

    # Read in Battistoni fluxes
    nue_battistoni = np.genfromtxt(join(args.flux_dir,"lowe/nue.dat"))
    nbe_battistoni = np.genfromtxt(join(args.flux_dir,"lowe/nbe.dat"))

    # Convert Battistoni fluxes from MeV -> GeV
    nue_battistoni[:,0] /= 1000.0
    nue_battistoni[:,1] *= 1000.0
    nbe_battistoni[:,0] /= 1000.0
    nbe_battistoni[:,1] *= 1000.0

    # Convert Battistoni fluxes from cm^-2 -> m^-2
    nue_battistoni[:,1] *= 100.0**2
    nbe_battistoni[:,1] *= 100.0**2

    # Assume muon neutrino flux below 100 MeV is twice that of electron
    # neutrino flux
    num_battistoni = nue_battistoni.copy()
    num_battistoni[:,1] *= 2
    nbm_battistoni = nbe_battistoni.copy()
    nbm_battistoni[:,1] *= 2

    # Read in Barr fluxes
    nue_barr = np.genfromtxt(join(args.flux_dir,"irc01/fmax20_i0403z.sno_nue"))
    nbe_barr = np.genfromtxt(join(args.flux_dir,"irc01/fmax20_i0403z.sno_nbe"))
    num_barr = np.genfromtxt(join(args.flux_dir,"irc01/fmax20_i0403z.sno_num"))
    nbm_barr = np.genfromtxt(join(args.flux_dir,"irc01/fmax20_i0403z.sno_nbm"))

    # Read in oscillation probabilities
    nue_osc_prob = np.genfromtxt(join(args.osc_dir,"nue_osc_prob.txt"))
    nbe_osc_prob = np.genfromtxt(join(args.osc_dir,"nbe_osc_prob.txt"))
    num_osc_prob = np.genfromtxt(join(args.osc_dir,"num_osc_prob.txt"))
    nbm_osc_prob = np.genfromtxt(join(args.osc_dir,"nbm_osc_prob.txt"))

    # Reshape oscillation probability arrays. They should now look like:
    #
    #     [[[0.01,  -1,   P(nue), P(num), P(nut)],
    #       [0.01,  -0.8, P(nue), P(num), P(nut)],
    #                ...
    #       [0.01,  1.0,  P(nue), P(num), P(nut)]],
    #      [[0.02,  -1,   P(nue), P(num), P(nut)],
    #       [0.02,  -0.8, P(nue), P(num), P(nut)],
    #                ...
    #       [0.02,  1.0,  P(nue), P(num), P(nut)]],
    #                ...
    #      [[10.0,  -1,   P(nue), P(num), P(nut)],
    #       [10.0,  -0.8, P(nue), P(num), P(nut)],
    #                ...
    #       [10.0,  1.0,  P(nue), P(num), P(nut)]]]
    shape0 = len(np.unique(nue_osc_prob[:,0]))
    nue_osc_prob = nue_osc_prob.reshape((shape0,-1,5))
    nbe_osc_prob = nbe_osc_prob.reshape((shape0,-1,5))
    num_osc_prob = num_osc_prob.reshape((shape0,-1,5))
    nbm_osc_prob = nbm_osc_prob.reshape((shape0,-1,5))

    # convert dn/dlnE -> dn/dE
    nue_barr[:,2] /= nue_barr[:,0]
    nbe_barr[:,2] /= nbe_barr[:,0]
    num_barr[:,2] /= num_barr[:,0]
    nbm_barr[:,2] /= nbm_barr[:,0]

    # Reshape Barr flux arrays. They should now look like:
    #
    #     [[[0.1,  -1,   flux,...],
    #       [0.2,  -1,   flux,...],
    #               ...
    #       [10.0, -1,   flux,...]],
    # 
    #      [[0.1,  -0.9, flux,...],
    #       [0.2,  -0.9, flux,...],
    #              ...
    #       [10.0, -0.9, flux,...]],
    #              ...
    #              ...
    #      [[0.1,   1.0, flux,...],
    #       [0.2,   1.0, flux,...],
    #              ...
    #       [10.0,  1.0, flux,...]]]
    shape1 = len(np.unique(nue_barr[:,0]))
    nue_barr = nue_barr.reshape((-1,shape1,5))
    nbe_barr = nbe_barr.reshape((-1,shape1,5))
    num_barr = num_barr.reshape((-1,shape1,5))
    nbm_barr = nbm_barr.reshape((-1,shape1,5))

    nue_zenith_dist_x = nue_barr[:,0,1].copy()
    nue_zenith_dist_y = nue_barr[:,0,2].copy()
    nue_zenith_dist_y /= np.trapz(nue_zenith_dist_y,x=nue_zenith_dist_x)
    nbe_zenith_dist_x = nbe_barr[:,0,1].copy()
    nbe_zenith_dist_y = nbe_barr[:,0,2].copy()
    nbe_zenith_dist_y /= np.trapz(nbe_zenith_dist_y,x=nbe_zenith_dist_x)
    num_zenith_dist_x = num_barr[:,0,1].copy()
    num_zenith_dist_y = num_barr[:,0,2].copy()
    num_zenith_dist_y /= np.trapz(num_zenith_dist_y,x=num_zenith_dist_x)
    nbm_zenith_dist_x = nbm_barr[:,0,1].copy()
    nbm_zenith_dist_y = nbm_barr[:,0,2].copy()
    nbm_zenith_dist_y /= np.trapz(nbm_zenith_dist_y,x=nbm_zenith_dist_x)

    nue_battistoniz = np.empty((nue_barr.shape[0],nue_battistoni.shape[0],4))
    nue_battistoniz[:,:,0] = nue_battistoni[:,0]
    nue_battistoniz[:,:,1] = nue_zenith_dist_x[:,np.newaxis]
    nue_battistoniz[:,:,2] = nue_battistoni[:,1]*nue_zenith_dist_y[:,np.newaxis]/(2*np.pi)
    nue_battistoniz[:,:,3] = nue_battistoniz[:,:,2]*nue_battistoniz[:,:,0]

    nbe_battistoniz = np.empty((nbe_barr.shape[0],nbe_battistoni.shape[0],4))
    nbe_battistoniz[:,:,0] = nbe_battistoni[:,0]
    nbe_battistoniz[:,:,1] = nbe_zenith_dist_x[:,np.newaxis]
    nbe_battistoniz[:,:,2] = nbe_battistoni[:,1]*nbe_zenith_dist_y[:,np.newaxis]/(2*np.pi)
    nbe_battistoniz[:,:,3] = nbe_battistoniz[:,:,2]*nbe_battistoniz[:,:,0]

    num_battistoniz = np.empty((num_barr.shape[0],num_battistoni.shape[0],4))
    num_battistoniz[:,:,0] = num_battistoni[:,0]
    num_battistoniz[:,:,1] = num_zenith_dist_x[:,np.newaxis]
    num_battistoniz[:,:,2] = num_battistoni[:,1]*num_zenith_dist_y[:,np.newaxis]/(2*np.pi)
    num_battistoniz[:,:,3] = num_battistoniz[:,:,2]*num_battistoniz[:,:,0]

    nbm_battistoniz = np.empty((nbm_barr.shape[0],nbm_battistoni.shape[0],4))
    nbm_battistoniz[:,:,0] = nbm_battistoni[:,0]
    nbm_battistoniz[:,:,1] = nbm_zenith_dist_x[:,np.newaxis]
    nbm_battistoniz[:,:,2] = nbm_battistoni[:,1]*nbm_zenith_dist_y[:,np.newaxis]/(2*np.pi)
    nbm_battistoniz[:,:,3] = nbm_battistoniz[:,:,2]*nbm_battistoniz[:,:,0]

    nue_total = np.empty((nue_barr.shape[0],nue_barr.shape[1]+nue_battistoniz.shape[1],4))
    nue_total[:,:nue_battistoniz.shape[1],:] = nue_battistoniz
    nue_total[:,nue_battistoniz.shape[1]:,:] = nue_barr[:,:,:4]

    nbe_total = np.empty((nbe_barr.shape[0],nbe_barr.shape[1]+nbe_battistoniz.shape[1],4))
    nbe_total[:,:nbe_battistoniz.shape[1],:] = nbe_battistoniz
    nbe_total[:,nbe_battistoniz.shape[1]:,:] = nbe_barr[:,:,:4]

    num_total = np.empty((num_barr.shape[0],num_barr.shape[1]+num_battistoniz.shape[1],4))
    num_total[:,:num_battistoniz.shape[1],:] = num_battistoniz
    num_total[:,num_battistoniz.shape[1]:,:] = num_barr[:,:,:4]

    nbm_total = np.empty((nbm_barr.shape[0],nbm_barr.shape[1]+nbm_battistoniz.shape[1],4))
    nbm_total[:,:nbm_battistoniz.shape[1],:] = nbm_battistoniz
    nbm_total[:,nbm_battistoniz.shape[1]:,:] = nbm_barr[:,:,:4]

    flux_arrays = {12: nue_total, -12: nbe_total,
                   14: num_total, -14: nbm_total}

    # Save unoscillated fluxes
    for p in [12,-12,14,-14]:
        np.savetxt("fmax20_i0403z_plus_lowe.sno_%s" % pdg_code_to_string(p),flux_arrays[p].reshape((flux_arrays[p].shape[0]*flux_arrays[p].shape[1],-1)),
                   fmt='%10.4f %10.3f %20.8g %20.8g',
                   header="Energy (GeV), Cos(zenith), Flux (m^-2 s^-1 Gev^-1 steradian^-1), Flux (dn/dlnE)")

    osc_prob = {12: nue_osc_prob, -12: nbe_osc_prob,
                14: num_osc_prob, -14: nbm_osc_prob}

    def get_flux_interp(nu_type):
        flux_array = flux_arrays[nu_type]
        flux = flux_array[:,:,2]
        e = flux_array[0,:,0]
        cos_theta = flux_array[:,0,1]

        # Use first order splines here since we need to enforce the fact that
        # the flux is not negative
        return RectBivariateSpline(e,cos_theta,flux.T,kx=1,ky=1)

    def get_osc_interp(nu_type1,nu_type2):
        prob = osc_prob[nu_type1]
        e = prob[:,0,0]
        cos_theta = prob[0,:,1]

        if np.sign(nu_type1) != np.sign(nu_type2):
            raise ValueError("asking for oscillation probability from %s -> %s!" % tuple(map(pdg_code_to_string,(nu_type1,nu_type2))))

        # Use second order splines here since oscillation probabilities are
        # pretty smooth
        if abs(nu_type2) == 12:
            return RectBivariateSpline(e,cos_theta,prob[:,:,2],kx=2,ky=2)
        elif abs(nu_type2) == 14:
            return RectBivariateSpline(e,cos_theta,prob[:,:,3],kx=2,ky=2)
        elif abs(nu_type2) == 16:
            return RectBivariateSpline(e,cos_theta,prob[:,:,4],kx=2,ky=2)

    def get_oscillated_flux(nu_type1, nu_type2, elo, emid, ehi, zlo, zmid, zhi):
        """
        Returns the average flux of neutrinos coming from `nu_type1` neutrinos
        oscillating to `nu_type2` neutrinos for neutrinos in the bin between
        energies elo and ehi and with a cosine of the zenith angle between zlo
        and zhi.

        Note: We also pass the midpoint of the bin for both energy and
        cos(theta) as `emid` and `zmid`. The reason for this is that at least
        for the Barr fluxes, the midpoint of the bin was chosen as the midpoint
        of the log of the left and right edge instead of the actual middle of
        the bin. Therefore to be consistent when interpolating these fluxes we
        should use the same value.

        The returned flux has units of 1/(m^2 sec steradian GeV).
        """
        f_flux1 = get_flux_interp(nu_type1)
        f_osc1 = get_osc_interp(nu_type1,nu_type2)

        def f_flux(e,z):
            # Not sure exactly how scipy deals with boundary issues in
            # RectBivariateSpline so we just make sure everything is within the
            # range of the values given in the Barr and Battistoni fluxes
            if e < 0.0106:
                e = 0.0106
            if z < -0.95:
                z = -0.95
            if z > 0.95:
                z = 0.95
            return f_flux1(e,z)

        def f_osc(e,z):
            # FIXME: Should remove this
            if e < 0.02:
                e = 0.02
            return f_osc1(e,z)

        # Here we have two options for calculating the oscillated flux:
        #
        # 1. We interpolate the value of the flux and then multiply by an
        # average oscillation probability. This is more correct in the sense
        # that the original flux values are actually a histogram and so it
        # makes sense to just sample the flux at the middle of the bin.
        #
        # 2. We integrate the product of the flux and the oscillation
        # probability over the whole bin. This is technically more correct
        # since it will weight the oscillation probability by the flux, but it
        # may have issues near the edge of the first and last bin since we have
        # to extrapolate.
        #
        # For now, we do 1 since it is much faster. To do the second you can
        # just comment the next line.
        return f_flux(emid,zmid)*f_osc1.integral(elo,ehi,zlo, zhi)/(ehi-elo)/(zhi-zlo)
        return nquad(lambda e, z: f_flux(e,z)*f_osc(e,z), [(elo,ehi), (zlo, zhi)], opts={'limit':1000,'epsrel':1e-3})[0]/(ehi-elo)/(zhi-zlo)

    data = {nu_type: np.zeros((cos_theta_bins.shape[0]-1,energy_bins.shape[0]-1,4)) for nu_type in [12,-12,14,-14,16,-16]}
    for nu_type1 in [12,-12,14,-14]:
        if nu_type1 > 0:
            nu_type2s = [12,14,16]
        else:
            nu_type2s = [-12,-14,-16]
        for nu_type2 in nu_type2s:
            print("Calculating neutrino flux for %s -> %s" % tuple(map(pdg_code_to_string,(nu_type1,nu_type2))))
            for i, (elo, ehi) in enumerate(zip(energy_bins[:-1],energy_bins[1:])):
                for j, (zlo, zhi) in enumerate(zip(cos_theta_bins[:-1],cos_theta_bins[1:])):
                    print("\r%i/%i" % (i*(len(cos_theta_bins)-1)+j+1,(len(cos_theta_bins)-1)*(len(energy_bins)-1)),end="")
                    sys.stdout.flush()
                    # We'll follow the Barr convention here and take the midpoint in log space
                    emid = np.exp((np.log(elo)+np.log(ehi))/2)
                    zmid = (zlo + zhi)/2
                    data[nu_type2][j,i,0] = emid
                    data[nu_type2][j,i,1] = zmid
                    data[nu_type2][j,i,2] += get_oscillated_flux(nu_type1,nu_type2,elo,emid,ehi,zlo,zmid,zhi)
            print()

    for nu_type2 in data:
        for i, (elo, ehi) in enumerate(zip(energy_bins[:-1],energy_bins[1:])):
            for j, (zlo, zhi) in enumerate(zip(cos_theta_bins[:-1],cos_theta_bins[1:])):
                data[nu_type2][j,i,3] = data[nu_type2][j,i,2]*data[nu_type2][j,i,0]

    for p in [12,-12,14,-14,16,-16]:
        np.savetxt("fmax20_i0403z_plus_lowe.sno_%s.osc" % pdg_code_to_string(p),data[p].reshape((data[p].shape[0]*data[p].shape[1],-1)),
                    fmt='%10.4f %10.3f %20.8g %20.8g',
                   header="Energy (GeV), Cos(zenith), Flux (m^-2 s^-1 Gev^-1 steradian^-1), Flux (dn/dlnE), Junk")