1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
|
#!/usr/bin/env python
# Copyright (c) 2019, Anthony Latorre <tlatorre at uchicago>
#
# This program is free software: you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the Free
# Software Foundation, either version 3 of the License, or (at your option)
# any later version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
# more details.
#
# You should have received a copy of the GNU General Public License along with
# this program. If not, see <https://www.gnu.org/licenses/>.
"""
Script to do final null hypothesis test that the events in the 20 MeV - 10 GeV
range are consistent with atmospheric neutrino events. To run it just run:
$ ./chi2 [list of data fit results] --mc [list of atmospheric MC files] --muon-mc [list of muon MC files] --steps [steps]
After running you will get a plot showing the best fit results of the MC and
data along with p-values for each of the possible particle combinations (single
electron, single muon, double electron, etc.).
"""
from __future__ import print_function, division
import numpy as np
from scipy.stats import iqr, poisson
from matplotlib.lines import Line2D
from scipy.stats import iqr, norm, beta
from scipy.special import spence
from itertools import izip_longest
from sddm.stats import *
import contextlib
from sddm.dc import estimate_errors
# from https://stackoverflow.com/questions/2891790/how-to-pretty-print-a-numpy-array-without-scientific-notation-and-with-given-pre
@contextlib.contextmanager
def printoptions(*args, **kwargs):
original = np.get_printoptions()
np.set_printoptions(*args, **kwargs)
try:
yield
finally:
np.set_printoptions(**original)
# Uncertainty on the energy scale
# FIXME: These are just placeholders! Should get real number from stopping
# muons.
ENERGY_SCALE_MEAN = {'e': 1.0, 'u': 1.0, 'eu': 1.0}
ENERGY_SCALE_UNCERTAINTY = {'e':0.1, 'u': 0.1, 'eu': 0.1}
ENERGY_RESOLUTION_MEAN = {'e': 0.0, 'u': 0.0, 'eu': 0.0}
ENERGY_RESOLUTION_UNCERTAINTY = {'e':0.1, 'u': 0.1, 'eu': 0.1}
# Absolute tolerance for the minimizer.
# Since we're minimizing the negative log likelihood, we really only care about
# the value of the minimum to within ~0.05 (10% of the one sigma shift).
# However, I have noticed before that setting a higher tolerance can sometimes
# cause the fit to get stuck in a local minima, so we set it here to a very
# small value.
FTOL_ABS = 1e-10
particle_id = {20: 'e', 22: r'\mu'}
def plot_hist2(hists, bins, color=None):
for id in (20,22,2020,2022,2222):
if id == 20:
plt.subplot(2,3,1)
elif id == 22:
plt.subplot(2,3,2)
elif id == 2020:
plt.subplot(2,3,4)
elif id == 2022:
plt.subplot(2,3,5)
elif id == 2222:
plt.subplot(2,3,6)
bincenters = (bins[1:] + bins[:-1])/2
plt.hist(bincenters, bins=bins, histtype='step', weights=hists[id],color=color)
plt.gca().set_xscale("log")
plt.xlabel("Energy (MeV)")
plt.title('$' + ''.join([particle_id[int(''.join(x))] for x in grouper(str(id),2)]) + '$')
if len(df):
plt.tight_layout()
def get_mc_hists(data,x,bins,apply_norm=False,reweight=False):
"""
Returns the expected Monte Carlo histograms for the atmospheric neutrino
background.
Args:
- data: pandas dataframe of the Monte Carlo events
- x: fit parameters
- bins: histogram bins
- apply_norm: boolean value representing whether we should apply the
atmospheric neutrino scale parameter
This function does two basic things:
1. apply the energy bias and resolution corrections
2. histogram the results
Normally to apply the energy resolution correction we should smear out each
MC event by the resolution and then bin the results. But since there are
thousands and thousands of MC events this takes way too long. Therefore, we
use a trick. We first bin the MC events on a much finer binning scale than
the final bins. We then smear this histogram and then bin the results in
the final bins.
Returns a dictionary mapping particle id combo -> histogram.
"""
ke_dict = {}
for id in (20,22,2020,2022,2222):
ke_dict[id] = data[data.id == id].ke.values
if reweight:
ke_weights_dict = {}
for id in (20,22,2020,2022,2222):
ke_weights_dict[id] = data[data.id == id].weight.values
else:
ke_weights_dict = None
return get_mc_hists_fast(ke_dict,x,bins,apply_norm,weights_dict=ke_weights_dict)
def get_mc_hists_fast(ke_dict,x,bins,apply_norm=False,weights_dict=None):
"""
Same as get_mc_hists() but the first argument is a dictionary mapping
particle id -> kinetic energy array. This is much faster than selecting the
events from the dataframe every time.
"""
mc_hists = {}
# FIXME: May need to increase number of bins here
bins2 = np.logspace(np.log10(10),np.log10(20e3),100)
bincenters2 = (bins2[1:] + bins2[:-1])/2
for id in (20,22,2020,2022,2222):
ke = ke_dict[id]
if id in (20,2020):
ke = ke*x[1]
scale = bincenters2*max(EPSILON,x[2])
elif id in (22,2222):
ke = ke*x[3]
scale = bincenters2*max(EPSILON,x[4])
elif id == 2022:
ke = ke*x[5]
scale = bincenters2*max(EPSILON,x[6])
if weights_dict:
hist = np.histogram(ke,bins=bins2,weights=weights_dict[id])[0]
else:
hist = np.histogram(ke,bins=bins2)[0]
cdf = norm.cdf(bins[:,np.newaxis],bincenters2,scale)*hist
mc_hists[id] = np.sum(cdf[1:] - cdf[:-1],axis=-1)
if apply_norm:
mc_hists[id] *= x[0]
return mc_hists
def get_data_hists(data,bins,scale=1.0):
"""
Returns the data histogrammed into `bins`.
"""
data_hists = {}
for id in (20,22,2020,2022,2222):
df_id = data[data.id == id]
data_hists[id] = np.histogram(df_id.ke.values,bins=bins)[0]*scale
return data_hists
# Likelihood Fit Parameters
# 0 - Atmospheric Neutrino Flux Scale
# 1 - Electron energy bias
# 2 - Electron energy resolution
# 3 - Muon energy bias
# 4 - Muon energy resolution
# 5 - Electron + Muon energy bias
# 6 - Electron + Muon energy resolution
# 7 - External Muon scale
FIT_PARS = [
'Atmospheric Neutrino Flux Scale',
'Electron energy bias',
'Electron energy resolution',
'Muon energy bias',
'Muon energy resolution',
'Electron + Muon energy bias',
'Electron + Muon energy resolution',
'External Muon scale']
def make_nll(data, muons, mc, bins):
data_hists = get_data_hists(data,bins)
ke_dict = {}
for id in (20,22,2020,2022,2222):
ke_dict[id] = mc[mc.id == id].ke.values
ke_dict_muon = {}
for id in (20,22,2020,2022,2222):
ke_dict_muon[id] = muons[muons.id == id].ke.values
def nll(x, grad=None):
if any(x[i] < 0 for i in range(len(x))):
return np.inf
# Get the Monte Carlo histograms. We need to do this within the
# likelihood function since several of the parameters like the energy
# bias and resolution affect the histograms.
#
# Note: I really should be applying the bias term to the data instead
# of the Monte Carlo. The reason being that the reconstruction was all
# tuned based on the data from the Monte Carlo. For example, the single
# PE charge distribution is taken from the Monte Carlo. Therefore, if
# there is some difference in bias between data and Monte Carlo, we
# should apply it to the data. However, the reason I apply it to the
# Monte Carlo instead is because applying an energy bias correction to
# an analysis in which we're using histograms is not really a good
# idea. If the energy scale parameter changes by a very small amount
# and causes a single event to cross a bin boundary you will see a
# discrete jump in the likelihood. This isn't good for minimizers
# (although it may be ok with the MCMC depending on the size of the
# jump). To reduce this issue, I apply the energy bias correction to
# the Monte Carlo, and since there are almost 100 times more events in
# the Monte Carlo than in data, the issue is much smaller.
#
# All that being said, this doesn't completely get rid of the issue,
# but I do two things that should make it OK:
#
# 1. I use the SBPLX minimizer instead of COBYLA which should have a
# better chance of jumping over small discontinuities.
#
# 2. I ultimately run an MCMC and so if we get stuck somewhere close to
# the minimum, the MCMC results should correctly deal with any small
# discontinuities.
#
# Also, it's critical that I first adjust the data energy by whatever
# amount I find with the stopping muons and Michel distributions.
mc_hists = get_mc_hists_fast(ke_dict,x,bins,apply_norm=True)
muon_hists = get_mc_hists_fast(ke_dict_muon,x,bins,apply_norm=False)
# Calculate the negative log of the likelihood of observing the data
# given the fit parameters
nll = 0
for id in data_hists:
oi = data_hists[id]
ei = mc_hists[id] + muon_hists[id]*x[7] + EPSILON
N = ei.sum()
nll -= -N - np.sum(gammaln(oi+1)) + np.sum(oi*np.log(ei))
# Add the priors
nll -= norm.logpdf(x[1],ENERGY_SCALE_MEAN['e'],ENERGY_SCALE_UNCERTAINTY['e'])
nll -= norm.logpdf(x[3],ENERGY_SCALE_MEAN['u'],ENERGY_SCALE_UNCERTAINTY['u'])
nll -= norm.logpdf(x[5],ENERGY_SCALE_MEAN['eu'],ENERGY_SCALE_UNCERTAINTY['eu'])
nll -= norm.logpdf(x[2],ENERGY_RESOLUTION_MEAN['e'],ENERGY_RESOLUTION_UNCERTAINTY['e'])
nll -= norm.logpdf(x[4],ENERGY_RESOLUTION_MEAN['u'],ENERGY_RESOLUTION_UNCERTAINTY['u'])
nll -= norm.logpdf(x[6],ENERGY_RESOLUTION_MEAN['eu'],ENERGY_RESOLUTION_UNCERTAINTY['eu'])
# Print the result
print("nll = %.2f" % nll)
return nll
return nll
def get_mc_hists_posterior(data_mc,muon_hists,data_hists,x,bins):
"""
Returns the posterior on the Monte Carlo histograms.
Basically this function just histograms the Monte Carlo data. However,
there is one extra thing it does. In general when doing a fit, the Monte
Carlo histograms have some uncertainty since you can never simulate an
infinite number of statistics. I don't think I've ever really seen anyone
properly treat this. Since the uncertainty on the central value in each bin
is just given by the Dirichlet distribution, we treat the problem of
finding the best value of the posterior as a problem in which you're prior
is equal to the expected number of events from the Monte Carlo, and then
you actually see the data. Since the likelihood on the true mean in each
bin is a multinomial, the posterior is also a dirichlet where the alpha
paramters are given by a sum of the prior and observed counts.
All that is a long way of saying we calculate the posterior as the sum of
the Monte Carlo events (unscaled) and the observed events. In the limit of
infinite statistics, this is just equal to the Monte Carlo predicted
histogram, but deals with the fact that we don't have infinite statistics,
and so a single outlier event isn't necessarily a problem with the model.
Returns a dictionary mapping particle id combo -> histogram.
"""
mc_hists = get_mc_hists(data_mc,x,bins,reweight=True)
for id in (20,22,2020,2022,2222):
mc_hists[id] = get_mc_hist_posterior(mc_hists[id],data_hists[id],norm=x[0])
# FIXME: does the orering of when we add the muons matter here?
mc_hists[id] += muon_hists[id]*x[7]
return mc_hists
def get_multinomial_prob(data, data_muon, data_mc, id, x_samples, bins, percentile=99.0, size=10000):
"""
Returns the p-value that the histogram of the data is drawn from the MC
histogram.
The p-value is calculated by first sampling the posterior of the fit
parameters `size` times. For each iteration we calculate a p-value. We then
return the `percentile` percentile of all the p-values. This approach is
similar to both the supremum and posterior predictive methods of
calculating a p-value. For more information on different methods of
calculating p-values see https://cds.cern.ch/record/1099967/files/p23.pdf.
Arguments:
data: 1D array of KE values
data_mc: 1D array of MC KE values
x_samples: MCMC samples of the floated parameters in the fit
bins: bins used to bin the mc histogram
size: number of values to compute
"""
data_hists = get_data_hists(data,bins)
muon_hists = get_data_hists(data_muon,bins)
# Get the total number of "universes" simulated in the GENIE reweight tool
if len(data_mc):
nuniverses = data_mc['universe'].max()+1
else:
nuniverses = 0
ps = []
for i in range(size):
x = x_samples[np.random.randint(x_samples.shape[0])]
if nuniverses > 0:
universe = np.random.randint(nuniverses)
else:
universe = 0
mc = get_mc_hists_posterior(data_mc[data_mc.universe == universe],muon_hists,data_hists,x,bins)[id]
N = mc.sum()
# Fix a bug in scipy(). See https://github.com/scipy/scipy/issues/8235 (I think).
mc = mc + 1e-10
p = mc/mc.sum()
chi2_data = nllr(data_hists[id],mc)
# To draw the multinomial samples we first draw the expected number of
# events from a Poisson distribution and then loop over the counts and
# unique values. The reason we do this is that you can't call
# multinomial.rvs with a multidimensional `n` array, and looping over every
# single entry takes forever
ns = np.random.poisson(N,size=1000)
samples = []
for n, count in zip(*np.unique(ns,return_counts=True)):
samples.append(multinomial.rvs(n,p,size=count))
samples = np.concatenate(samples)
# Calculate the negative log likelihood ratio for the data simulated under
# the null hypothesis
chi2_samples = nllr(samples,mc)
ps.append(np.count_nonzero(chi2_samples >= chi2_data)/len(chi2_samples))
return np.percentile(ps,percentile)
def get_prob(data,muon,mc,samples,bins,size):
prob = {}
for id in (20,22,2020,2022,2222):
prob[id] = get_multinomial_prob(data,muon,mc,id,samples,bins,size=size)
print(id, prob[id])
return prob
def do_fit(data,muon,data_mc,bins,steps):
"""
Run the fit and return the minimum along with samples from running an MCMC
starting near the minimum.
Args:
- data: pandas dataframe representing the data to fit
- muon: pandas dataframe representing the expected background from
external muons
- data_mc: pandas dataframe representing the expected background from
atmospheric neutrino events
- bins: an array of bins to use for the fit
- steps: the number of MCMC steps to run
Returns a tuple (xopt, samples) where samples is an array of shape (steps,
number of parameters).
"""
nll = make_nll(data,muon,data_mc,bins)
x0 = np.array([1.0,1.0,EPSILON,1.0,EPSILON,1.0,EPSILON,EPSILON])
opt = nlopt.opt(nlopt.LN_SBPLX, len(x0))
opt.set_min_objective(nll)
low = np.array([EPSILON]*len(x0))
high = np.array([10]*len(x0))
opt.set_lower_bounds(low)
opt.set_upper_bounds(high)
opt.set_ftol_abs(FTOL_ABS)
opt.set_initial_step([0.01]*len(x0))
xopt = opt.optimize(x0)
print("xopt = ", xopt)
nll_xopt = nll(xopt)
print("nll(xopt) = ", nll(xopt))
stepsizes = estimate_errors(nll,xopt,low,high)
with printoptions(precision=3, suppress=True):
print("Errors: ", stepsizes)
pos = np.empty((20, len(x0)),dtype=np.double)
for i in range(pos.shape[0]):
pos[i] = xopt + np.random.randn(len(x0))*stepsizes
pos[i,:] = np.clip(pos[i,:],low,high)
nwalkers, ndim = pos.shape
sampler = emcee.EnsembleSampler(nwalkers, ndim, lambda x: -nll(x))
with np.errstate(invalid='ignore'):
sampler.run_mcmc(pos, steps)
print("Mean acceptance fraction: {0:.3f}".format(np.mean(sampler.acceptance_fraction)))
try:
print("autocorrelation time: ", sampler.get_autocorr_time(quiet=True))
except Exception as e:
print(e)
samples = sampler.chain.reshape((-1,len(x0)))
return xopt, samples
if __name__ == '__main__':
import argparse
import numpy as np
import pandas as pd
import sys
import h5py
from sddm.plot_energy import *
from sddm.plot import *
from sddm import setup_matplotlib
import nlopt
import emcee
parser = argparse.ArgumentParser("plot fit results")
parser.add_argument("filenames", nargs='+', help="input files")
parser.add_argument("--save", action='store_true', default=False, help="save corner plots for backgrounds")
parser.add_argument("--mc", nargs='+', required=True, help="atmospheric MC files")
parser.add_argument("--muon-mc", nargs='+', required=True, help="muon MC files")
parser.add_argument("--nhit-thresh", type=int, default=None, help="nhit threshold to apply to events before processing (should only be used for testing to speed things up)")
parser.add_argument("--steps", type=int, default=1000, help="number of steps in the MCMC chain")
parser.add_argument("--multinomial-prob-size", type=int, default=10000, help="number of p values to compute")
parser.add_argument("--coverage", type=int, default=0, help="plot p value coverage")
parser.add_argument("--weights", nargs='+', required=True, help="GENIE reweight HDF5 files")
args = parser.parse_args()
setup_matplotlib(args.save)
import matplotlib.pyplot as plt
# Loop over runs to prevent using too much memory
evs = []
rhdr = pd.concat([read_hdf(filename, "rhdr").assign(filename=filename) for filename in args.filenames],ignore_index=True)
for run, df in rhdr.groupby('run'):
evs.append(get_events(df.filename.values, merge_fits=True, nhit_thresh=args.nhit_thresh))
ev = pd.concat(evs)
ev_mc = get_events(args.mc, merge_fits=True, nhit_thresh=args.nhit_thresh)
muon_mc = get_events(args.muon_mc, merge_fits=True, nhit_thresh=args.nhit_thresh)
weights = pd.concat([read_hdf(filename, "weights") for filename in args.weights],ignore_index=True)
# Set all prompt events in the MC to be muons
muon_mc.loc[muon_mc.prompt & muon_mc.filename.str.contains("cosmic"),'muon'] = True
ev = ev.reset_index()
ev_mc = ev_mc.reset_index()
muon_mc = muon_mc.reset_index()
# 00-orphan cut
ev = ev[(ev.gtid & 0xff) != 0]
ev_mc = ev_mc[(ev_mc.gtid & 0xff) != 0]
muon_mc = muon_mc[(muon_mc.gtid & 0xff) != 0]
# remove events 200 microseconds after a muon
ev = ev.groupby('run',group_keys=False).apply(muon_follower_cut)
# Get rid of events which don't have a successful fit
ev = ev[~np.isnan(ev.fmin)]
ev_mc = ev_mc[~np.isnan(ev_mc.fmin)]
muon_mc = muon_mc[~np.isnan(muon_mc.fmin)]
# require (r/r_psup)^3 < 0.9
ev = ev[ev.r_psup < 0.9]
ev_mc = ev_mc[ev_mc.r_psup < 0.9]
muon_mc = muon_mc[muon_mc.r_psup < 0.9]
# require psi < 6
ev = ev[ev.psi < 6]
ev_mc = ev_mc[ev_mc.psi < 6]
muon_mc = muon_mc[muon_mc.psi < 6]
data = ev[ev.signal & ev.prompt & ~ev.atm]
data_atm = ev[ev.signal & ev.prompt & ev.atm]
# Right now we use the muon Monte Carlo in the fit. If you want to use the
# actual data, you can comment the next two lines and then uncomment the
# two after that.
muon = muon_mc[muon_mc.muon & muon_mc.prompt & ~muon_mc.atm]
muon_atm = muon_mc[muon_mc.muon & muon_mc.prompt & muon_mc.atm]
#muon = ev[ev.muon & ev.prompt & ~ev.atm]
#muon_atm = ev[ev.muon & ev.prompt & ev.atm]
data_mc = ev_mc[ev_mc.signal & ev_mc.prompt & ~ev_mc.atm]
data_atm_mc = ev_mc[ev_mc.signal & ev_mc.prompt & ev_mc.atm]
# Merge the reweight scales only after we've done all the data cleaning and
# high level cuts
data_mc_with_weights = pd.merge(data_mc,weights,how='left',on=['run','evn'])
data_atm_mc_with_weights = pd.merge(data_atm_mc,weights,how='left',on=['run','evn'])
# Make sure we are only using data with weights
#
# FIXME: There is probably a better way to do this. For example, we could
# use the full dataset for the fit and then scale the normalization factor
# by the ratio of events with weights to the total number of events.
data_mc = data_mc_with_weights[data_mc_with_weights.universe == 0]
data_atm_mc = data_atm_mc_with_weights[data_atm_mc_with_weights.universe == 0]
bins = np.logspace(np.log10(20),np.log10(10e3),21)
if args.coverage:
p_values = {id: [] for id in (20,22,2020,2022,2222)}
p_values_atm = {id: [] for id in (20,22,2020,2022,2222)}
ENERGY_RESOLUTION_UNCERTAINTY = {'e':100.0, 'u': 100.0, 'eu': 100.0}
scale = 0.01
muon_scale = 0.01
energy_resolution = 0.1
true_values = [scale,1.0,energy_resolution,1.0,energy_resolution,1.0,energy_resolution,muon_scale]
assert(len(true_values) == len(FIT_PARS))
pull = [[] for i in range(len(FIT_PARS))]
# Set the random seed so we get reproducible results here
np.random.seed(0)
for i in range(args.coverage):
# Calculate expected number of events
N = len(data_mc)*scale
N_atm = len(data_atm_mc)*scale
N_muon = len(muon)*muon_scale
N_muon_atm = len(muon_atm)*muon_scale
# Calculate observed number of events
n = np.random.poisson(N)
n_atm = np.random.poisson(N_atm)
n_muon = np.random.poisson(N_muon)
n_muon_atm = np.random.poisson(N_muon_atm)
# Sample data from Monte Carlo
data = pd.concat((data_mc.sample(n=n,replace=True,weights='weights'), muon.sample(n=n_muon,replace=True)))
data_atm = pd.concat((data_atm_mc.sample(n=n_atm,replace=True,weights='weights'), muon_atm.sample(n=n_muon_atm,replace=True)))
# Smear the energies by the additional energy resolution
data.ke += np.random.randn(len(data.ke))*data.ke*energy_resolution
data_atm.ke += np.random.randn(len(data_atm.ke))*data_atm.ke*energy_resolution
xopt, samples = do_fit(data,muon,data_mc,bins,args.steps)
for i in range(len(FIT_PARS)):
mean = np.mean(samples[:,i])
std = np.std(samples[:,i])
pull[i].append((mean - true_values[i])/std)
prob = get_prob(data,muon,data_mc_with_weights,samples,bins,size=args.multinomial_prob_size)
prob_atm = get_prob(data_atm,muon_atm,data_atm_mc_with_weights,samples,bins,size=args.multinomial_prob_size)
for id in (20,22,2020,2022,2222):
p_values[id].append(prob[id])
p_values_atm[id].append(prob_atm[id])
fig = plt.figure()
for id in (20,22,2020,2022,2222):
if id == 20:
plt.subplot(2,3,1)
elif id == 22:
plt.subplot(2,3,2)
elif id == 2020:
plt.subplot(2,3,4)
elif id == 2022:
plt.subplot(2,3,5)
elif id == 2222:
plt.subplot(2,3,6)
plt.hist(p_values[id],bins=np.linspace(0,1,101),histtype='step')
plt.title('$' + ''.join([particle_id[int(''.join(x))] for x in grouper(str(id),2)]) + '$')
despine(fig,trim=True)
plt.tight_layout()
if args.save:
fig.savefig("chi2_p_value_coverage_plot.pdf")
fig.savefig("chi2_p_value_coverage_plot.eps")
else:
plt.suptitle("P-value Coverage without Neutron Follower")
fig = plt.figure()
for id in (20,22,2020,2022,2222):
if id == 20:
plt.subplot(2,3,1)
elif id == 22:
plt.subplot(2,3,2)
elif id == 2020:
plt.subplot(2,3,4)
elif id == 2022:
plt.subplot(2,3,5)
elif id == 2222:
plt.subplot(2,3,6)
plt.hist(p_values_atm[id],bins=np.linspace(0,1,101),histtype='step')
plt.title('$' + ''.join([particle_id[int(''.join(x))] for x in grouper(str(id),2)]) + '$')
despine(fig,trim=True)
plt.tight_layout()
if args.save:
fig.savefig("chi2_p_value_coverage_plot_atm.pdf")
fig.savefig("chi2_p_value_coverage_plot_atm.eps")
else:
plt.suptitle("P-value Coverage with Neutron Follower")
# Bins for the pull plots
bins = np.linspace(-10,10,101)
bincenters = (bins[1:] + bins[:-1])/2
fig = plt.figure()
axes = []
for i, name in enumerate(FIT_PARS):
axes.append(plt.subplot(3,3,i+1))
plt.hist(pull[i],bins=bins,histtype='step',normed=True)
plt.plot(bincenters,norm.pdf(bincenters))
plt.title(name)
for ax in axes:
ax.set_xlim((-10,10))
despine(ax=ax,left=True,trim=True)
ax.get_yaxis().set_visible(False)
plt.tight_layout()
if args.save:
fig.savefig("chi2_pull_plot.pdf")
fig.savefig("chi2_pull_plot.eps")
else:
plt.show()
sys.exit(0)
xopt, samples = do_fit(data,muon,data_mc,bins,args.steps)
prob = get_prob(data,muon,data_mc_with_weights,samples,bins,size=args.multinomial_prob_size)
prob_atm = get_prob(data_atm,muon_atm,data_atm_mc_with_weights,samples,bins,size=args.multinomial_prob_size)
plt.figure()
plt.subplot(3,3,1)
plt.hist(samples[:,0],bins=100,histtype='step')
plt.xlabel("Atmospheric Flux Scale")
despine(ax=plt.gca(),left=True,trim=True)
plt.gca().get_yaxis().set_visible(False)
plt.subplot(3,3,2)
plt.hist(samples[:,1],bins=100,histtype='step')
plt.xlabel("Electron Energy Scale")
despine(ax=plt.gca(),left=True,trim=True)
plt.gca().get_yaxis().set_visible(False)
plt.subplot(3,3,3)
plt.hist(samples[:,2],bins=100,histtype='step')
plt.xlabel("Electron Energy Resolution")
despine(ax=plt.gca(),left=True,trim=True)
plt.gca().get_yaxis().set_visible(False)
plt.subplot(3,3,4)
plt.hist(samples[:,3],bins=100,histtype='step')
plt.xlabel("Muon Energy Scale")
despine(ax=plt.gca(),left=True,trim=True)
plt.gca().get_yaxis().set_visible(False)
plt.subplot(3,3,5)
plt.hist(samples[:,4],bins=100,histtype='step')
plt.xlabel("Muon Energy Resolution")
despine(ax=plt.gca(),left=True,trim=True)
plt.gca().get_yaxis().set_visible(False)
plt.subplot(3,3,6)
plt.hist(samples[:,5],bins=100,histtype='step')
plt.xlabel("Electron + Muon Energy Scale")
despine(ax=plt.gca(),left=True,trim=True)
plt.gca().get_yaxis().set_visible(False)
plt.subplot(3,3,7)
plt.hist(samples[:,6],bins=100,histtype='step')
plt.xlabel("Electron + Muon Energy Resolution")
despine(ax=plt.gca(),left=True,trim=True)
plt.gca().get_yaxis().set_visible(False)
plt.subplot(3,3,8)
plt.hist(samples[:,7],bins=100,histtype='step')
plt.xlabel("Muon Scale")
despine(ax=plt.gca(),left=True,trim=True)
plt.gca().get_yaxis().set_visible(False)
plt.tight_layout()
if args.save:
plt.savefig("chi2_fit_posterior.pdf")
plt.savefig("chi2_fit_posterior.eps")
else:
plt.suptitle("Fit Posteriors")
handles = [Line2D([0], [0], color='C0'),
Line2D([0], [0], color='C1'),
Line2D([0], [0], color='C2')]
labels = ('Data','Monte Carlo','External Muons')
fig = plt.figure()
hists = get_data_hists(data,bins)
hists_muon = get_data_hists(muon,bins,scale=xopt[7])
hists_mc = get_mc_hists(data_mc,xopt,bins,apply_norm=True)
plot_hist2(hists,bins=bins,color='C0')
plot_hist2(hists_mc,bins=bins,color='C1')
plot_hist2(hists_muon,bins=bins,color='C2')
for id in (20,22,2020,2022,2222):
if id == 20:
plt.subplot(2,3,1)
elif id == 22:
plt.subplot(2,3,2)
elif id == 2020:
plt.subplot(2,3,4)
elif id == 2022:
plt.subplot(2,3,5)
elif id == 2222:
plt.subplot(2,3,6)
plt.text(0.95,0.95,"p = %.2f" % prob[id],horizontalalignment='right',verticalalignment='top',transform=plt.gca().transAxes)
fig.legend(handles,labels,loc='upper right')
despine(fig,trim=True)
if args.save:
plt.savefig("chi2_prompt.pdf")
plt.savefig("chi2_prompt.eps")
else:
plt.suptitle("Without Neutron Follower")
fig = plt.figure()
hists = get_data_hists(data_atm,bins)
hists_muon = get_data_hists(muon_atm,bins,scale=xopt[7])
hists_mc = get_mc_hists(data_atm_mc,xopt,bins,apply_norm=True)
plot_hist2(hists,bins=bins,color='C0')
plot_hist2(hists_mc,bins=bins,color='C1')
plot_hist2(hists_muon,bins=bins,color='C1')
for id in (20,22,2020,2022,2222):
if id == 20:
plt.subplot(2,3,1)
elif id == 22:
plt.subplot(2,3,2)
elif id == 2020:
plt.subplot(2,3,4)
elif id == 2022:
plt.subplot(2,3,5)
elif id == 2222:
plt.subplot(2,3,6)
plt.text(0.95,0.95,"p = %.2f" % prob_atm[id],horizontalalignment='right',verticalalignment='top',transform=plt.gca().transAxes)
fig.legend(handles,labels,loc='upper right')
despine(fig,trim=True)
if args.save:
plt.savefig("chi2_atm.pdf")
plt.savefig("chi2_atm.eps")
else:
plt.suptitle("With Neutron Follower")
plt.show()
|