1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
|
#!/usr/bin/env python3
# Copyright (c) 2019, Anthony Latorre <tlatorre at uchicago>
#
# This program is free software: you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the Free
# Software Foundation, either version 3 of the License, or (at your option)
# any later version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
# more details.
#
# You should have received a copy of the GNU General Public License along with
# this program. If not, see <https://www.gnu.org/licenses/>.
import numpy as np
from scipy.integrate import quad
from scipy.stats import expon
from scipy.special import spherical_jn, erf
from numpy import pi
from functools import lru_cache
# on retina screens, the default plots are way too small
# by using Qt5 and setting QT_AUTO_SCREEN_SCALE_FACTOR=1
# Qt5 will scale everything using the dpi in ~/.Xresources
import matplotlib
matplotlib.use("Qt5Agg")
# speed of light (exact)
SPEED_OF_LIGHT = 299792458 # m/s
# depth of the SNO detector (m)
# currently just converted 6800 feet -> meters
h = 2072.0
# radius of earth (m)
# from the "Earth Fact Sheet" at https://nssdc.gsfc.nasa.gov/planetary/factsheet/earthfact.html
# we use the volumetric mean radius here
R = 6.371e6
# Approximate dark matter velocity in m/s. The true distribution is expected to
# be a Maxwell Boltzmann distribution which is modulated annually by the
# earth's rotation around the sun, but we just assume a single constant
# velocity here. From Lewin and Smith Appendix B
DM_VELOCITY = 230e3
# Approximate earth velocity in the galactic rest frame (?)
# from Lewin and Smith Equation 3.6
EARTH_VELOCITY = 244e3
# Approximate dark matter density in GeV/m^3. From Tom Caldwell's thesis.
# from Lewin and Smith page 91
DM_DENSITY = 0.4e6
# Number density of scatterers in the Earth.
#
# FIXME: Currently just set to the number density of atoms in water. Need to
# update this for rock, and in fact this will change near the detector since
# there is water outside the AV.
DENSITY_WATER = 1e3 # In kg/m^3
# mean density of norite rock which is the rock surrounding SNO
# probably conservative
NORITE_DENSITY = 3e3 # In kg/m^3
# atomic masses for various elements
# from https://www.angelo.edu/faculty/kboudrea/periodic/structure_mass.htm
element_mass = {
'H':1.0,
'C':12.011,
'O':15.9994,
'Na':22.98977,
'Mg':24.305,
'Al':26.98154,
'Si':28.0855,
'K':39.0983,
'Ca':40.08,
'Mn':54.9380,
'Fe':55.847,
'Ti':47.90
}
# composition and mean density of norite rock which is the rock surrounding SNO
# the composition is from Table 3.2 in the SNOLAB User's handbook
water = {'composition':
{'H':20,
'O':80},
'density':1e3}
# composition and mean density of the mantle
# from www.knowledgedoor.com/2/elements_handbook/element_abundances_in_the_earth_s_mantle.html
# density from hyperphysics.phy-astr.gsu.edu/hbase/Geophys/earthstruct.html
mantle = {'composition':
{'O':44.33,
'Mg':22.17,
'Si':21.22,
'Fe':6.3},
'density':4.4e3}
# composition and mean density of norite rock which is the rock surrounding SNO
# the composition is from Table 3.2 in the SNOLAB User's handbook
norite = {'composition':
{'H':0.15,
'C':0.04,
'O':46.0,
'Na':2.2,
'Mg':3.3,
'Al':9.0,
'Si':26.2,
'K': 1.2,
'Ca':5.2,
'Mn':0.1,
'Fe':6.2,
'Ti':0.5},
'density':3e3}
# Fiducial volume (m)
FIDUCIAL_RADIUS = 5
# Fiducial volume (m^3)
FIDUCIAL_VOLUME = 4*pi*FIDUCIAL_RADIUS**3/3
# proton mass from the PDG (2018)
PROTON_MASS = 0.938 # GeV
# proton mass from the PDG (2018)
ATOMIC_MASS_UNIT = 0.931 # GeV
# mass of Xenon in atomic units
XENON_MASS = 131.293
# mass of Neon in atomic units
NEON_MASS = 20.18
# mass of argon in atomic units
ARGON_MASS = 39.948
# mass of germanium in atomic units
GERMANIUM_MASS = 72.64
# mass of tungsten in atomic units
TUNGSTEN_MASS = 183.84
# mass of oxygen in atomic units
OXYGEN_MASS = 15.999
# mass of silicon in atomic units
SILICON_MASS = 28.0855
# mass of iron in atomic units
IRON_MASS = 55.845
# mass of magnesium in atomic units
MAGNESIUM_MASS = 24.305
# galactic escape velocity (m/s)
# from Tom Caldwell's thesis page 25
ESCAPE_VELOCITY = 244e3
# conversion constant from PDG
HBARC = 197.326978812e-3 # GeV fm
# Avogadros number (kg^-1)
N0 = 6.02214085774e26
def get_probability(r, l):
"""
Returns the probability of a dark photon decaying in the SNO detector from
a dark matter decay distributed uniformly in the Earth. Assumes that the
depth of SNO is much larger than the dimensions of the SNO detector.
"""
if r <= h:
theta_min = 0
elif r <= 2*R - h:
theta_min = pi - np.arccos((h**2 + r**2 - 2*R*h)/(2*r*(R-h)))
else:
return 0
return (1 + np.cos(theta_min))*np.exp(-r/l)/(2*l)
@lru_cache()
def get_probability2(l):
p, err = quad(get_probability, 0, min(2*R-h,10*l), args=(l,), epsabs=0, epsrel=1e-7, limit=1000)
return p
def get_event_rate(m, cs0, l, A):
"""
Returns the event rate of leptons produced from self-destructing dark
matter in the SNO detector for a given dark matter mass m, a cross section
cs, and a mediator decay length l.
"""
# For now we assume the event rate is constant throughout the earth, so we
# are implicitly assuming that the cross section is pretty small.
flux = DM_VELOCITY*DM_DENSITY/m
#p, err = quad(get_probability, 0, min(2*R-h,10*l), args=(l,), epsabs=0, epsrel=1e-7, limit=1000)
p = get_probability2(l)
cs = get_cross_section(cs0, m, A)
# FIXME: factor of 2 because the DM particle decays into two mediators?
return p*cs*(N0/A)*flux*FIDUCIAL_VOLUME
def get_event_rate_sno(m, cs0, l, composition):
"""
Returns the event rate of leptons produced from self-destructing dark
matter in the SNO detector for a given dark matter mass m, a cross section
cs, and a mediator decay length l.
"""
rate = 0.0
for element, mass_fraction in composition['composition'].items():
rate += mass_fraction/100*get_event_rate(m,cs0,l,element_mass[element])
return rate*composition['density']
def get_nuclear_form_factor(A, e):
"""
Returns the nuclear form factor for a WIMP-nucleus interaction.
From Tom Caldwell's thesis page 24.
Also used Mark Pepin's thesis page 50
"""
# mass of xenon nucleus
mn = A*ATOMIC_MASS_UNIT
# calculate approximate size of radius
s = 0.9 # fm
a = 0.52 # fm
c = 1.23*A**(1/3) - 0.60 # fm
r1 = np.sqrt(c**2 + (7/3)*pi**2*a**2 - 5*s**2)
q = np.sqrt(2*mn*e)
if q*r1/HBARC < 1e-10:
return 1.0
# Helm form factor
# from Mark Pepin's thesis page 50
f = 3*spherical_jn(1,q*r1/HBARC)*np.exp(-(q*s/HBARC)**2/2)/(q*r1/HBARC)
return f
def get_cross_section(cs0, m, A):
"""
Returns the WIMP cross section from the target-independent WIMP-nucleon
cross section cs0 at zero momentum transfer.
From Tom Caldwell's thesis page 21.
"""
# mass of xenon nucleus
mn = A*ATOMIC_MASS_UNIT
# reduced mass of the nucleus and the WIMP
mr = (m*mn)/(m + mn)
# reduced mass of the proton and the WIMP
mp = (m*PROTON_MASS)/(m + PROTON_MASS)
return cs0*A**2*mr**2/mp**2
def get_differential_event_rate_xenon(e, m, cs0, A):
"""
Returns the event rate of WIMP scattering in the Xenon 100T detector.
"""
# mass of nucleus
mn = A*ATOMIC_MASS_UNIT
# reduced mass of the nucleus and the WIMP
mr = (m*mn)/(m + mn)
cs = get_cross_section(cs0, m, A)
v0 = DM_VELOCITY
vesc = ESCAPE_VELOCITY
# earth's velocity through the galaxy
ve = EARTH_VELOCITY
# minimum wimp velocity needed to produce a recoil of energy e
vmin = np.sqrt(mn*e/2)*(mn+m)*SPEED_OF_LIGHT/(mn*m)
f = get_nuclear_form_factor(A, e)
x = vmin/v0
y = ve/v0
z = vesc/v0
# Equation 3.49 in Mark Pepin's thesis
k0 = (pi*v0**2)**(3/2)
# Equation 3.49 in Mark Pepin's thesis
k1 = k0*(erf(z)-(2/np.sqrt(pi))*z*np.exp(-z**2))
# From Mark Pepin's CDMS thesis page 59
if x <= z - y:
I = (k0/k1)*(DM_DENSITY/(2*ve))*(erf(x+y) - erf(x-y) - (4/np.sqrt(pi))*y*np.exp(-z**2))
elif x <= y + z:
I = (k0/k1)*(DM_DENSITY/(2*ve))*(erf(z) - erf(x-y) - (2/np.sqrt(pi))*(y+z-x)*np.exp(-z**2))
else:
return 0
return (N0/A)*(mn/(2*m*mr**2))*cs*f**2*I*SPEED_OF_LIGHT**2
def get_event_rate_xenon(m, cs, A, threshold):
"""
Returns the event rate of WIMP scattering in a dark matter detector using
an element with atomic mass A. Rate is in Hz kg^-1.
"""
# mass of nucleus
mn = A*ATOMIC_MASS_UNIT
# reduced mass of the nucleus and the WIMP
mr = (m*mn)/(m + mn)
vesc = ESCAPE_VELOCITY
# earth's velocity through the galaxy
ve = EARTH_VELOCITY
# max recoil they looked for was 40 keV
emax = 2*mr**2*((ve+vesc)/SPEED_OF_LIGHT)**2/mn
rate, err = quad(get_differential_event_rate_xenon, threshold, emax, args=(m,cs,A), epsabs=0, epsrel=1e-2, limit=1000)
return rate
if __name__ == '__main__':
import matplotlib.pyplot as plt
ls = np.logspace(-1,8,1000)
cs = 1e-50 # cm^2
# FIXME: should use water density for L < 1 m, silicon density for L ~ 1
# km, and iron for L >> 1 km
rate = np.array([get_event_rate_sno(1, cs*1e-4, l, water) for l in ls])
colors = plt.rcParams['axes.prop_cycle'].by_key()['color']
plt.figure()
plt.subplot(111)
plt.plot(ls, rate/np.max(rate),color=colors[0])
plt.xlabel("Mediator Decay Length (m)")
plt.ylabel("Event Rate (arbitrary units)")
plt.axvline(x=FIDUCIAL_RADIUS, color=colors[1], ls='--', label="SNO radius")
plt.axvline(x=h, ls='--', color=colors[2], label="Depth of SNO")
plt.axvline(x=R, ls='--', color=colors[3], label="Earth radius")
plt.gca().set_xscale('log')
plt.gca().set_xlim((ls[0], ls[-1]))
plt.title("Event Rate of Self-Destructing Dark Matter in SNO")
plt.legend()
# threshold is ~5 keVr
xenon_100t_threshold = 5e-6
# threshold is ~1 keVr
cdms_threshold = 1e-6
# threshold is ~100 eV
# FIXME: is this correct?
cresst_threshold = 1e-7
ms = np.logspace(-2,3,200)
cs0s = np.logspace(-50,-40,200)
mm, cs0cs0 = np.meshgrid(ms, cs0s)
rate1 = np.empty(mm.shape)
rate2 = np.empty(mm.shape)
rate3 = np.empty(mm.shape)
rate4 = np.empty(mm.shape)
rate5 = np.empty(mm.shape)
rate6 = np.empty(mm.shape)
for i in range(mm.shape[0]):
print("\r%i/%i" % (i+1,mm.shape[0]),end='')
for j in range(mm.shape[1]):
rate1[i,j] = get_event_rate_xenon(mm[i,j], cs0cs0[i,j]*1e-4, XENON_MASS, xenon_100t_threshold)
rate2[i,j] = get_event_rate_sno(mm[i,j], cs0cs0[i,j]*1e-4, 1.0, water)
rate3[i,j] = get_event_rate_xenon(mm[i,j], cs0cs0[i,j]*1e-4, GERMANIUM_MASS, cdms_threshold)
rate4[i,j] = get_event_rate_xenon(mm[i,j], cs0cs0[i,j]*1e-4, TUNGSTEN_MASS, cresst_threshold)
rate5[i,j] = get_event_rate_sno(mm[i,j], cs0cs0[i,j]*1e-4, 1e3, norite)
rate6[i,j] = get_event_rate_sno(mm[i,j], cs0cs0[i,j]*1e-4, 1e6, mantle)
print()
# Fiducial volume of the Xenon1T detector is 1042 +/- 12 kg
# from arxiv:1705.06655
xenon_100t_fiducial_volume = 1042 # kg
# Livetime of the Xenon1T results
# from arxiv:1705.06655
xenon_100t_livetime = 34.2 # days
plt.figure()
plt.subplot(111)
plt.gca().set_xscale('log')
plt.gca().set_yscale('log')
CS1 = plt.contour(mm,cs0cs0,rate1*3600*24*xenon_100t_fiducial_volume*xenon_100t_livetime,[10.0], colors=[colors[0]])
CS2 = plt.contour(mm,cs0cs0,rate2*3600*24*668.8,[10.0],colors=[colors[1]])
CS3 = plt.contour(mm,cs0cs0,rate3*3600*24*70.10,[10.0],colors=[colors[2]])
# FIXME: I used 2.39 kg day because that's what CRESST-3 reports in their paper
# but! I only use Tungsten here so do I need to multiply by the mass fraction of tungsten?
CS4 = plt.contour(mm,cs0cs0,rate4*3600*24*2.39,[10.0],colors=[colors[3]])
CS5 = plt.contour(mm,cs0cs0,rate5*3600*24*668.8,[10.0],colors=[colors[1]], linestyles=['dashed'])
CS6 = plt.contour(mm,cs0cs0,rate6*3600*24*668.8,[10.0],colors=[colors[1]], linestyles=['dotted'])
plt.clabel(CS1, inline=1, fmt="XENON1T", fontsize=10, use_clabeltext=True)
plt.clabel(CS2, inline=1, fmt=r"SNO ($\mathrm{L}_V$ = 1 m)", fontsize=10)
plt.clabel(CS3, inline=1, fmt="CDMSLite", fontsize=10)
plt.clabel(CS4, inline=1, fmt="CRESST-3", fontsize=10)
plt.clabel(CS5, inline=1, fmt=r"SNO ($\mathrm{L}_V$ = 1 km)", fontsize=10)
plt.clabel(CS6, inline=1, fmt=r"SNO ($\mathrm{L}_V$ = 1000 km)", fontsize=10)
plt.xlabel(r"$m_\chi$ (GeV)")
plt.ylabel(r"WIMP-nucleon scattering cross section ($\mathrm{cm}^2$)")
plt.title("Self-Destructing Dark Matter Limits")
x = np.linspace(0,300e-6,1000)
# reproducing Figure 2.1 in Tom Caldwell's thesis
plt.figure()
plt.plot(x*1e6, list(map(lambda x: get_nuclear_form_factor(XENON_MASS, x)**2,x)), label="Xe")
plt.plot(x*1e6, list(map(lambda x: get_nuclear_form_factor(NEON_MASS, x)**2,x)), label="Ne")
plt.plot(x*1e6, list(map(lambda x: get_nuclear_form_factor(ARGON_MASS, x)**2,x)), label="Ar")
plt.plot(x*1e6, list(map(lambda x: get_nuclear_form_factor(GERMANIUM_MASS, x)**2,x)), label="Ge")
plt.xlabel("Recoil Energy (keV)")
plt.ylabel(r"$F^2(E)$")
plt.gca().set_yscale('log')
plt.legend()
plt.gca().set_ylim((1e-5,1))
plt.gca().set_xlim((0,300))
plt.title("Nuclear Form Factors for various elements")
plt.show()
|