1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
|
#!/usr/bin/env python
# Copyright (c) 2019, Anthony Latorre <tlatorre at uchicago>
#
# This program is free software: you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the Free
# Software Foundation, either version 3 of the License, or (at your option)
# any later version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
# more details.
#
# You should have received a copy of the GNU General Public License along with
# this program. If not, see <https://www.gnu.org/licenses/>.
"""
Very simple script to analyze GENIE MC to estimate the expected event rate from
atmospheric neutrino events before and after different cuts. To run it simply
pass the filename of a GENIE ntuple file:
$ ./analyze-genie-mc mc_atm_nu_genie_010000_0.gst.root
Note: The input files should be in the GENIE "ntuple" format which you can
create by using the gntpc utility. For example:
$ gntpc -i /sno/output/d2o-leta/mc_atmospherics/atmospheric_neutrinos_genie/root/mc_atm_nu_genie_010000_0.root -f gst
will create a new file mc_atm_nu_genie_010000_0.gst.root in the current working
directory in the ntuple file format.
"""
from __future__ import print_function, division
import ROOT
import numpy as np
# on retina screens, the default plots are way too small
# by using Qt5 and setting QT_AUTO_SCREEN_SCALE_FACTOR=1
# Qt5 will scale everything using the dpi in ~/.Xresources
import matplotlib
matplotlib.use("Qt5Agg")
def tick_formatter(x, pos):
if x < 1:
return '%.1f' % x
else:
return '%.0f' % x
# FIXME: What is this for the salt phase?
NEUTRON_DETECTION_EFFICIENCY = 0.5
# FIXME: What is the index for D2O?
INDEX_HEAVY_WATER = 1.3
# fractional energy resolution
# from Richie's thesis page 134
ENERGY_RESOLUTION = 0.05
def pdg_code_to_string(pdg):
A = int(("%010i" % event.tgt)[-4:-1])
Z = int(("%010i" % event.tgt)[-7:-4])
if Z == 1:
atom = 'H'
elif Z == 8:
atom = 'O'
elif Z == 6:
atom = 'C'
else:
raise NotImplementedError("unknown atom %i" % Z)
return '%i%s' % (A,atom)
def get_reaction(event):
reactants = []
products = []
if event.neu == 12:
reactants.append('ve')
elif event.neu == -12:
reactants.append('vebar')
elif event.neu == 14:
reactants.append('vu')
elif event.neu == -14:
reactants.append('vubar')
elif event.neu == 16:
reactants.append('vt')
elif event.neu == -16:
reactants.append('vtbar')
if event.hitnuc == 2212:
reactants.append('p')
elif event.hitnuc == 2112:
reactants.append('n')
elif event.hitnuc == 0:
reactants.append(pdg_code_to_string(event.tgt))
else:
print("unknown nucleon %i" % event.hitnuc)
if event.cc:
if event.neu == 12:
products.append('e-')
elif event.neu == -12:
products.append('e+')
elif event.neu == 14:
products.append('u-')
elif event.neu == -14:
products.append('u+')
elif event.neu == 16:
products.append('t-')
elif event.neu == -16:
products.append('t+')
elif event.nc:
if event.neu == 12:
products.append('ve')
elif event.neu == -12:
products.append('vebar')
elif event.neu == 14:
products.append('vu')
elif event.neu == -14:
products.append('vubar')
elif event.neu == 16:
products.append('vt')
elif event.neu == -16:
products.append('vtbar')
else:
products.append("???")
for pdg in event.pdgf:
if pdg == 2112:
products.append('n')
elif abs(pdg) == 11:
# e- or e+
if pdg == 11:
products.append('e-')
else:
products.append('e+')
elif pdg == 22:
# gamma
products.append('gamma')
elif pdg == 111:
# pi0
products.append('pi0')
elif abs(pdg) == 211:
# pi+/-
if pdg == 211:
products.append('pi+')
else:
products.append('pi-')
elif abs(pdg) == 311:
if pdg == 311:
products.append('K0')
else:
products.append('K0bar')
elif abs(pdg) == 321:
# K+/-
if pdg == 321:
products.append('K+')
else:
products.append('K-')
elif abs(pdg) == 3222:
products.append('Sigma+')
elif abs(pdg) == 3112:
products.append('Sigma-')
elif abs(pdg) == 3122:
products.append('Delta')
elif pdg == 2212:
products.append('p')
elif int(("%010i" % abs(pdg))[0]) == 1:
products.append(pdg_code_to_string(pdg))
else:
print("unknown pdg code %i" % pdg)
return ' + '.join(reactants) + ' -> ' + ' + '.join(products)
if __name__ == '__main__':
import argparse
import matplotlib.pyplot as plt
from collections import Counter
parser = argparse.ArgumentParser("script to analyze GENIE 'ntuple' ROOT files")
parser.add_argument("filenames", nargs='+', help="GENIE ROOT files")
args = parser.parse_args()
bins = np.logspace(-1,2,100)
El = []
total_neutrons = []
total_neutrons_detected = []
E = []
KE = []
r = []
total_nrings = []
total_e_like_rings = []
total_u_like_rings = []
reactions = Counter()
for filename in args.filenames:
print("analyzing %s" % filename)
f = ROOT.TFile(filename)
T = f.Get("gst")
for event in T:
neutrons = 0
nrings = 0
e_like_rings = 0
u_like_rings = 0
ke = 0
if event.cc:
if abs(event.neu) == 12:
e_like_rings = 1
else:
u_like_rings = 1
nrings = 1
ke += event.El
elif event.nc:
pass
else:
print("event is not cc or nc!")
continue
for i, pdg in enumerate(event.pdgf):
if pdg == 2112:
neutrons += 1
elif abs(pdg) == 11:
# e- or e+
if event.Ef[i] > 0.1:
# for now assume we only count rings from electrons
# with > 100 MeV
nrings += 1
e_like_rings += 1
ke += event.Ef[i]
elif pdg == 22:
# gamma
if event.Ef[i] > 0.1:
# for now assume we only count rings from gammas with >
# 100 MeV
nrings += 1
e_like_rings += 1
ke += event.Ef[i]
elif pdg == 111:
# pi0
nrings += 1
e_like_rings += 1
ke += event.Ef[i]
elif abs(pdg) == 211:
# pi+/-
# momentum of ith particle in hadronic system
p = np.sqrt(event.pxf[i]**2 + event.pyf[i]**2 + event.pzf[i]**2)
# velocity of ith particle (in units of c)
# FIXME: is energy total energy or kinetic energy?
v = p/event.Ef[i]
if v > 1/INDEX_HEAVY_WATER:
# if the pion is above threshold, we assume that it
# produces 2 muon like rings
nrings += 2
u_like_rings += 2
else:
# if the pion is not above threshold, we assume that it
# produces 1 muon like ring
nrings += 1
u_like_rings += 1
# FIXME: should actually be a beta distribution
p = np.sqrt(event.pxf[i]**2 + event.pyf[i]**2 + event.pzf[i]**2)
m = np.sqrt(event.Ef[i]**2 - p**2)
ke += event.Ef[i] - m
elif abs(pdg) in [2212,3222,311,321,3122,3112]:
# momentum of ith particle in hadronic system
p = np.sqrt(event.pxf[i]**2 + event.pyf[i]**2 + event.pzf[i]**2)
# velocity of ith particle (in units of c)
# FIXME: is energy total energy or kinetic energy?
v = p/event.Ef[i]
if v > 1/INDEX_HEAVY_WATER:
# above cerenkov threshold
nrings += 1
u_like_rings += 1
m = np.sqrt(event.Ef[i]**2 - p**2)
ke += event.Ef[i] - m
elif int(("%010i" % abs(pdg))[0]) == 1:
# usually just excited 16O atom which won't produce a lot
# of light
pass
else:
print("unknown pdg code %i" % pdg)
total_neutrons.append(neutrons)
total_neutrons_detected.append(np.random.binomial(neutrons,NEUTRON_DETECTION_EFFICIENCY))
total_nrings.append(nrings)
total_e_like_rings.append(e_like_rings)
total_u_like_rings.append(u_like_rings)
El.append(event.El)
E.append(event.calresp0)
KE.append(ke + np.random.randn()*ke*ENERGY_RESOLUTION)
r.append(np.sqrt(event.vtxx**2 + event.vtxy**2 + event.vtxz**2))
if total_neutrons_detected[-1] == 0 and nrings >= 2 and ((e_like_rings == 0) or (u_like_rings == 0)):
reactions.update([get_reaction(event)])
total = sum(reactions.values())
for reaction, count in reactions.most_common(10):
print("%.0f%% %s" % (count*100/total, reaction))
El = np.array(El)
total_neutrons = np.array(total_neutrons)
total_neutrons_detected = np.array(total_neutrons_detected)
E = np.array(E)
KE = np.array(KE)
r = np.array(r)
total_nrings = np.array(total_nrings)
total_e_like_rings = np.array(total_e_like_rings)
total_u_like_rings = np.array(total_u_like_rings)
cut1 = (total_neutrons_detected == 0)
cut2 = (total_neutrons_detected == 0) & (total_nrings >= 2)
cut3 = (total_neutrons_detected == 0) & (total_nrings >= 2) & ((total_e_like_rings == 0) | (total_u_like_rings == 0))
El1 = El[cut1]
El2 = El[cut2]
El3 = El[cut3]
E1 = E[cut1]
E2 = E[cut2]
E3 = E[cut3]
KE1 = KE[cut1]
KE2 = KE[cut2]
KE3 = KE[cut3]
plt.figure()
bincenters = (bins[1:] + bins[:-1])/2
x = np.repeat(bins,2)
El_hist, _ = np.histogram(El, bins=bins)
total_events = El_hist.sum()
# FIXME: this is just a rough estimate of how many events we expect in 3
# years based on Richie's thesis which says "Over the 306.4 live days of
# the D2O phase we expect a total of 192.4 events within the acrylic vessel
# and 504.5 events within the PSUP.
El_hist = El_hist*230/total_events
y = np.concatenate([[0],np.repeat(El_hist,2),[0]])
El1_hist, _ = np.histogram(El1, bins=bins)
El1_hist = El1_hist*230/total_events
y1 = np.concatenate([[0],np.repeat(El1_hist,2),[0]])
El2_hist, _ = np.histogram(El2, bins=bins)
El2_hist = El2_hist*230/total_events
y2 = np.concatenate([[0],np.repeat(El2_hist,2),[0]])
El3_hist, _ = np.histogram(El3, bins=bins)
El3_hist = El3_hist*230/total_events
y3 = np.concatenate([[0],np.repeat(El3_hist,2),[0]])
plt.plot(x, y, label="All events")
plt.step(x, y1, where='mid', label="n")
plt.step(x, y2, where='mid', label="n + nrings")
plt.step(x, y3, where='mid', label="n + nrings + same flavor")
plt.xlabel("Energy (GeV)")
plt.ylabel("Events/year")
plt.gca().set_xscale("log")
plt.gca().xaxis.set_major_formatter(matplotlib.ticker.FuncFormatter(tick_formatter))
plt.xlim((0.02,bins[-1]))
plt.ylim((0,None))
plt.legend()
plt.title("Primary Lepton Energy")
plt.figure()
KE_hist, _ = np.histogram(KE, bins=bins)
KE_signal, _ = np.histogram(np.random.randn(1000)*1.0*ENERGY_RESOLUTION + 1.0, bins=bins)
total_events = KE_hist.sum()
# FIXME: this is just a rough estimate of how many events we expect in 3
# years based on Richie's thesis which says "Over the 306.4 live days of
# the D2O phase we expect a total of 192.4 events within the acrylic vessel
# and 504.5 events within the PSUP.
KE_hist = KE_hist*230/total_events
y = np.concatenate([[0],np.repeat(KE_hist,2),[0]])
KE1_hist, _ = np.histogram(KE1, bins=bins)
KE1_hist = KE1_hist*230/total_events
y1 = np.concatenate([[0],np.repeat(KE1_hist,2),[0]])
KE2_hist, _ = np.histogram(KE2, bins=bins)
KE2_hist = KE2_hist*230/total_events
y2 = np.concatenate([[0],np.repeat(KE2_hist,2),[0]])
KE3_hist, _ = np.histogram(KE3, bins=bins)
KE3_hist = KE3_hist*230/total_events
y3 = np.concatenate([[0],np.repeat(KE3_hist,2),[0]])
KE_signal = KE_signal*10/np.sum(KE_signal)
y4 = np.concatenate([[0],np.repeat(KE_signal,2),[0]])
plt.plot(x, y, label="All events")
plt.plot(x, y1, label="n")
plt.plot(x, y2, label="n + nrings")
plt.plot(x, y3, label="n + nrings + same flavor")
plt.plot(x, y4, label="1 GeV signal")
plt.xlabel("Energy (GeV)")
plt.ylabel(r"Expected Event Rate (year$^{-1}$)")
plt.gca().set_xscale("log")
plt.gca().xaxis.set_major_formatter(matplotlib.ticker.FuncFormatter(tick_formatter))
plt.xlim((0.02,bins[-1]))
plt.ylim((0,None))
plt.legend()
plt.title("Approximate Visible Energy")
plt.figure()
plt.hist(r, bins=np.linspace(0,8,100), histtype='step')
plt.xlabel("R (m)")
plt.title("Radius of Events")
plt.figure()
plt.hist(total_neutrons, bins=np.arange(11)-0.5, histtype='step')
plt.xlabel("Number of Neutrons")
plt.title("Number of Neutrons")
plt.figure()
plt.hist(total_nrings, bins=np.arange(11)-0.5, histtype='step')
plt.xlabel("Number of Rings")
plt.title("Number of Rings (approximate)")
plt.show()
|