1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
|
#include "sno_charge.h"
#include <gsl/gsl_sf_gamma.h>
#include <math.h>
#include <gsl/gsl_spline.h>
#include <gsl/gsl_integration.h>
#include <unistd.h>
#include <stdio.h>
#include "misc.h"
/* Maximum number of PE to compute charge PDFs for.
*
* For PE greater than this we compute the PDF using a Gaussian distribution. */
#define MAX_PE 100
/* Minimum charge to compute the PDF at (in units of PE). */
double qlo = -1.0;
/* Maximum charge to compute the PDF at (in units of PE). */
double qhi = 100.0;
/* Number of points in the charge PDF. */
#define nq 10000
/* Charge PDFs. */
static double x[nq];
static double pq[MAX_PE][nq];
/* Log of the charge PDFs used for calculations in the likelihood. */
static double log_pq[MAX_PE][nq];
/* Mean and standard deviation of the single PE charge distribution.
*
* This is used to evaluate the probability of a high charge where we don't
* have a precomputed PDF. We assume the central limit theorem and just compute
* the probability density as a Gaussian with mean n*qmean and standard
* deviation sqrt(n)*qstd where `n` is the number of PE. */
static double qmean, qstd;
/* Lookup table for the log of the probability of the discriminator not firing
* as a function of the number of PE which hit the tube. We compute this in
* init_charge() by integrating the charge PDF up to the mean threshold for all
* channels. */
static double log_pmiss[MAX_PE];
/* Keep track of whether init_charge() has been called so we can exit if a
* function is called before being initialized. */
static int initialized = 0;
/* Parameters for the single PE charge distribution. These numbers come from
* mc_generator.dat in SNOMAN 5.0294. */
/* Polya parameter. */
static double M = 8.1497;
/* Amplitude of 1st Polya. */
static double NG1 = 0.27235e-1;
/* Slope of Polya Gain 1 vs. high-half point. */
static double SLPG1 = 0.71726;
/* Offset of Polya Gain 1 vs. high-half point. */
static double OFFG1 = 1.2525;
/* Amplitude of 2nd Polya. */
static double NG2 = 0.7944e-3;
/* Slope of Polya Gain 2 vs. high-half point. */
static double SLPG2 = 0.71428;
/* Offset of Polya Gain 2 vs. high-half point. */
static double OFFG2 = 118.21;
/* Amplitude of exponential noise peak. */
static double NEXP = 0.81228e-1;
/* Falloff parameter of exponential noise peak. */
static double Q0 = 20.116;
/* Mean of high-half point distribution. */
static double MEAN_HIPT = 46.0;
/* Width of noise before discriminator in ADC counts. */
static double QNOISE = 0.61;
/* Width of smearing after discriminator in ADC counts. */
static double QSMEAR_ADC = 3.61;
/* Mean of simulated threshold distribution. */
static double MEAN_THRESH = 8.5;
double spe_pol2exp(double q)
{
/* Returns the probability distribution to get a charge `q` on a PMT with a
* high-half point `hhp` from a single photoelectron.
*
* We assume that the charge has been normalized by the high-half point.
*
* This function models the single PE charge distribution as a double Polya
* with an exponential noise term. */
double qpe1, qpe2, funpol1, funpol2, gmratio, g1, g2, norm, hhp;
if (q < 0) return 0.0;
hhp = MEAN_HIPT;
q *= MEAN_HIPT;
g1 = OFFG1 + SLPG1*hhp;
g2 = OFFG2 + SLPG2*hhp;
qpe1 = q/g1;
qpe2 = q/g2;
funpol1 = pow(M*qpe1,M-1)*exp(-M*qpe1);
funpol2 = pow(M*qpe2,M-1)*exp(-M*qpe2);
gmratio = M/gsl_sf_gamma(M);
norm = (NG1*g1 + NG2*g2 + NEXP*Q0)/MEAN_HIPT;
return (gmratio*(NG1*funpol1 + NG2*funpol2) + NEXP*exp(-q/Q0))/norm;
}
double get_log_pq(double q, int n)
{
/* Returns the log of the probability of observing a charge `q` given that
* `n` PE were generated.
*
* `q` should be in units of PE. */
if (!initialized) {
fprintf(stderr, "charge interpolation hasn't been initialized!\n");
exit(1);
}
if (n > MAX_PE) {
/* Assume the distribution is gaussian by the central limit theorem. */
return log_norm(q,n*qmean,sqrt(n)*qstd);
}
if (q < qlo || q > qhi) return -INFINITY;
return interp1d(q,x,log_pq[n-1],nq);
}
double get_pq(double q, int n)
{
/* Returns the probability of observing a charge `q` given that `n` PE were
* generated.
*
* `q` should be in units of PE. */
if (!initialized) {
fprintf(stderr, "charge interpolation hasn't been initialized!\n");
exit(1);
}
if (n > MAX_PE) {
/* Assume the distribution is gaussian by the central limit theorem. */
return norm(q,n*qmean,sqrt(n)*qstd);
}
if (q < qlo || q > qhi) return 0.0;
return interp1d(q,x,pq[n-1],nq);
}
double get_log_pmiss(int n)
{
/* Returns the log of the probability that the channel discriminator didn't
* fire given `n` PE were generated. */
if (!initialized) {
fprintf(stderr, "charge interpolation hasn't been initialized!\n");
exit(1);
}
if (n == 0) {
/* If no PE were generated, there is a 100% chance that the
* discriminator didn't fire, so the log is zero. */
return 0.0;
} else if (n > MAX_PE) {
/* For n > MAX_PE we assume there is a 100% chance that the
* discriminator fires. */
return -INFINITY;
}
return log_pmiss[n-1];
}
static double gsl_charge(double x, void *params)
{
double q = ((double *) params)[0];
int n = (int) ((double *) params)[1];
return get_pq(x,1)*get_pq(q-x,n-1);
}
static double gsl_charge2(double x, void *params)
{
int n = (int) ((double *) params)[0];
return get_pq(x,n);
}
static double gsl_smear(double x, void *params)
{
double q = ((double *) params)[0];
int n = (int) ((double *) params)[1];
return get_pq(x,n)*norm(q-x,0.0,QSMEAR_ADC/MEAN_HIPT);
}
static double sno_charge1(double q, void *params)
{
return q*spe_pol2exp(q);
}
static double sno_charge2(double q, void *params)
{
return q*q*spe_pol2exp(q);
}
void init_charge(void)
{
/* Compute the charge PDFs for up to MAX_PE PE. */
int i, j;
gsl_integration_cquad_workspace *w;
double result, error;
size_t nevals;
double params[2];
gsl_function F;
double q, q2;
double y[nq];
initialized = 1;
for (i = 0; i < nq; i++) {
x[i] = qlo + (qhi-qlo)*i/(nq-1);
}
w = gsl_integration_cquad_workspace_alloc(100);
F.function = &sno_charge1;
F.params = NULL;
/* Compute the average single PE charge. */
gsl_integration_cquad(&F, 0, qhi, 0, 1e-9, w, &result, &error, &nevals);
q = result;
F.function = &sno_charge2;
F.params = NULL;
/* Compute the expected value of the single PE charge squared. */
gsl_integration_cquad(&F, 0, qhi, 0, 1e-9, w, &result, &error, &nevals);
q2 = result;
/* Compute the mean and standard deviation of the single PE charge PDF. */
qmean = q;
qstd = sqrt(q2 - q*q);
/* Compute the single PE charge PDF. */
for (j = 0; j < nq; j++) {
pq[0][j] = spe_pol2exp(x[j]);
}
F.function = &gsl_charge;
F.params = ¶ms;
/* Compute the charge PDFs for `n` PE by convolving the `n-1` charge PDF
* with the single PE charge PDF. */
for (i = 2; i <= MAX_PE; i++) {
for (j = 0; j < nq; j++) {
params[0] = x[j];
params[1] = i;
if (x[j] < 0) {
pq[i-1][j] = 0.0;
continue;
}
gsl_integration_cquad(&F, 0, x[j], 0, 1e-4, w, &result, &error, &nevals);
pq[i-1][j] = result;
}
}
/* Integrate the charge distribution before smearing to figure out the
* probability that the discriminator didn't fire.
*
* Note: Technically there is some smearing before the discriminator, but
* it is very small, so we ignore it. */
F.function = &gsl_charge2;
for (i = 1; i <= MAX_PE; i++) {
params[0] = i;
gsl_integration_cquad(&F, 0, MEAN_THRESH/MEAN_HIPT, 0, 1e-9, w, &result, &error, &nevals);
log_pmiss[i-1] = log(result);
}
F.function = &gsl_smear;
/* Convolve the charge PDFs with a gaussian distribution to represent
* smearing from the electronics. */
for (i = 1; i <= MAX_PE; i++) {
for (j = 0; j < nq; j++) {
params[0] = x[j];
params[1] = i;
gsl_integration_cquad(&F, fmax(0.0,x[j]-QSMEAR_ADC*10/MEAN_HIPT), x[j]+QSMEAR_ADC*10/MEAN_HIPT, 0, 1e-4, w, &result, &error, &nevals);
/* Store the smeared charge PDF in a temporary array since we need
* to keep the original PDF for the next iteration of the loop. */
y[j] = result;
}
for (j = 0; j < nq; j++) {
pq[i-1][j] = y[j];
}
}
gsl_integration_cquad_workspace_free(w);
/* Compute the log of the charge distributions to speed up the likelihood
* calculation. */
for (i = 1; i <= MAX_PE; i++) {
for (j = 0; j < nq; j++) {
log_pq[i-1][j] = log(pq[i-1][j]);
}
}
}
|