1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
|
/* Copyright (c) 2019, Anthony Latorre <tlatorre at uchicago>
*
* This program is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option)
* any later version.
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <https://www.gnu.org/licenses/>.
*/
#include "quad.h"
#include "event.h"
#include <gsl/gsl_randist.h>
#include <gsl/gsl_rng.h>
#include <unistd.h> /* for exit() */
#include <stdlib.h> /* for size_t */
#include <gsl/gsl_linalg.h>
#include "pdg.h"
#include "pmt.h"
#include <gsl/gsl_statistics_double.h>
#include "optics.h"
#include "vector.h"
#include "likelihood.h"
#include <gsl/gsl_sort.h>
#include <gsl/gsl_cblas.h>
#include "misc.h"
#include <gsl/gsl_errno.h>
#include "sno_charge.h"
#include "sno.h"
#include <gsl/gsl_permute.h>
#include "random.h"
char quad_err[256];
void my_handler(const char *reason, const char *file, int line, int gsl_errno)
{
fprintf(stderr, "gsl: %s:%d: %s: %s\n", file, line, "ERROR", reason);
return;
}
/* Returns an approximate vertex position and time using the QUAD fitter.
*
* The QUAD fitter was originally developed for SNO and estimates the event
* vertex using a sort of Hough Transform[1]. It works by selecting 4 random
* PMT hits and computing the position and time of the event which is
* consistent with those hits. This procedure is repeated many times and the
* median of the resulting "quad cloud" is found as an estimate of the event
* position and time.
*
* Note: In the original formulation I believe instead of taking the median it
* used a minimization routine to find the position and time with the highest
* density of points, but since we are dealing with mostly high nhit events we
* just take the median because it is easier and quicker.
*
* Update: This version of quad now also weights the PMT hits it selects by the
* probability that they are more than 1 PE. The idea here is that we'd like to
* ignore scattered and reflected light when selecting these points and most
* scattered and reflected light is single photons.
*
* `ev` should be a pointer to the event.
*
* `pos` is a pointer to a double array of length 3.
*
* `t0` is a pointer to a double.
*
* `npoints` is the number of quad cloud points to compute. This function will
* try to compute this many points, but it will stop trying after 10*npoints
* times to avoid an infinite loop.
*
* `f` is the quantile of t0 to cut on. It should be between 0 and 1. The
* reason to cut on a quantile of t0 is that for particles with tracks much
* longer than a centimeter, the quad cloud of points generally follows the
* whole track. Since we are interested in finding the position and time of the
* start of the track, we'd like to only select the quad points at the start of
* the track. To do this we only include quad cloud points in the first `f`
* quantile when computing the position and time. For the default quad behavior
* without cutting on t0, you should set `f` to 1.0.
*
* Returns 0 on success and `pos` and `t0` will be set to the approximate
* vertex position and time respectively. On error, returns -1 and sets the
* `quad_err` string.
*
* Example:
*
* double pos[3], t0;
* if (quad(&ev, pos, &t0, 1000)) {
* fprintf(stderr, "error running the quad fitter: %s\n", quad_err);
* goto err;
* }
*
* [1] The only reference to the QUAD fitter that I can find from the SNO days
* is Stephen Brice's PHD thesis which cites three SNO technical reports, but I
* haven't been able to find these. The first two of these reports are by Bill
* Frati who I assume wrote the initial implementation. */
int quad(event *ev, double *pos, double *t0, size_t npoints, double f)
{
size_t i, j, k;
static int index[MAX_PMTS];
int nhit;
const gsl_rng_type *T;
gsl_rng *r;
int xs[4];
size_t nresults;
double M[3][3], Minv[3][3];
double K[3], g[3], h[3], n[3], tmp[3];
double a, b, c;
double pos1[3], pos2[3];
static double results[QUAD_MAX][4];
double c2;
double n_d2o;
double t1, t2;
int s;
double pmt_dir[3];
double expected;
static double w[MAX_PMTS];
double tmin;
size_t max_tries;
gsl_error_handler_t *old_handler;
int status;
size_t reorder[QUAD_MAX];
double pq = 0.0;
n_d2o = get_avg_index_d2o();
c2 = SPEED_OF_LIGHT*SPEED_OF_LIGHT/pow(n_d2o,2);
if (npoints > QUAD_MAX) {
sprintf(quad_err, "npoints must be less than %i", QUAD_MAX);
return 1;
}
double expected_pe = 0.0;
nhit = 0;
for (i = 0; i < MAX_PMTS; i++) {
if (ev->pmt_hits[i].flags || pmts[i].pmt_type != PMT_NORMAL) continue;
if (ev->pmt_hits[i].hit) {
expected_pe += ev->pmt_hits[i].q;
nhit += 1;
}
}
expected_pe /= nhit;
nhit = 0;
for (i = 0; i < MAX_PMTS; i++) {
if (ev->pmt_hits[i].flags || pmts[i].pmt_type != PMT_NORMAL) continue;
if (ev->pmt_hits[i].hit) {
index[nhit] = i;
/* Weights are equal to the probability that the hit is > 1 photon.
* This is supposed to be a rough proxy for the probability that
* it's not reflected and/or scattered light (which is typically
* single photons). */
if (ev->pmt_hits[i].q > QUAD_MAX_PE*get_qmean()/2) {
/* If the charge is greater than QUAD_MAX_PE, it's almost
* certainly multiple photons so we don't waste time calculating P(1 PE|q). */
w[nhit] = 1.0;
} else {
/* We want to calculate P(multiple photons|q) which we calculate as:
*
* P(multiple photons|q) = 1 - P(1 PE|q) = 1 - P(q|1 PE)P(1 PE)/P(q)
*
* To calculate the second two quantities we assume the number
* of PE is Poisson distributed with a mean equal to
* expected_photons. */
pq = 0.0;
for (j = 1; j < QUAD_MAX_PE; j++) {
pq += get_pq(ev->pmt_hits[i].q,j)*gsl_ran_poisson_pdf(j,expected_pe);
}
w[nhit] = 1-get_pq(ev->pmt_hits[i].q,1)*gsl_ran_poisson_pdf(1,expected_pe)/pq;
}
nhit++;
}
}
if (nhit < 5) {
sprintf(quad_err, "only %i pmt hit(s). quad needs at least 5 points!", nhit);
return 1;
}
T = gsl_rng_default;
r = gsl_rng_alloc(T);
gsl_permutation *p = gsl_permutation_alloc(3);
i = 0;
max_tries = npoints*10;
nresults = 0;
while (nresults < npoints && i++ < max_tries) {
/* Choose 4 random hits. */
ran_choose_weighted(xs,w,4,index,nhit);
/* Shuffle them since GSL always returns the random choices in order.
*
* I'm not actually sure if that affects the quad calculation. */
gsl_ran_shuffle(r,xs,4,sizeof(int));
for (j = 1; j < 4; j++) {
for (k = 0; k < 3; k++) {
M[j-1][k] = pmts[xs[j]].pos[k] - pmts[xs[0]].pos[k];
}
n[j-1] = ev->pmt_hits[xs[j]].t - ev->pmt_hits[xs[0]].t;
K[j-1] = (c2*(pow(ev->pmt_hits[xs[0]].t,2) - pow(ev->pmt_hits[xs[j]].t,2)) - DOT(pmts[xs[0]].pos,pmts[xs[0]].pos) + DOT(pmts[xs[j]].pos,pmts[xs[j]].pos))/2;
}
gsl_matrix_view m = gsl_matrix_view_array(&M[0][0],3,3);
gsl_matrix_view minv = gsl_matrix_view_array(&Minv[0][0],3,3);
gsl_vector_view k_view = gsl_vector_view_array(K,3);
gsl_vector_view g_view = gsl_vector_view_array(g,3);
gsl_vector_view h_view = gsl_vector_view_array(h,3);
gsl_vector_view n_view = gsl_vector_view_array(n,3);
gsl_linalg_LU_decomp(&m.matrix, p, &s);
/* Ocassionaly the matrix is singular and we can't invert it. Since we
* don't want our program to quit when this happens, we install a new
* gsl error handler, do the matrix inversion, and then restore the old
* handler. If the matrix inversion failed, then we just continue with
* the next quad point. */
/* save original handler, install new handler */
old_handler = gsl_set_error_handler(&my_handler);
status = gsl_linalg_LU_invert(&m.matrix, p, &minv.matrix);
/* restore original handler */
gsl_set_error_handler(old_handler);
if (status) continue;
gsl_blas_dgemv(CblasNoTrans,1.0,&minv.matrix,&k_view.vector,0.0,&g_view.vector);
gsl_blas_dgemv(CblasNoTrans,1.0,&minv.matrix,&n_view.vector,0.0,&h_view.vector);
SUB(tmp,pmts[xs[0]].pos,g);
a = c2*(c2*DOT(h,h) - 1.0);
b = -2*c2*(DOT(tmp,h) - ev->pmt_hits[xs[0]].t);
c = DOT(tmp,tmp) - c2*pow(ev->pmt_hits[xs[0]].t,2);
if (b*b - 4*a*c < 0) continue;
t1 = (-b + sqrt(b*b - 4*a*c))/(2*a);
COPY(tmp,h);
MUL(tmp,c2*t1);
ADD(pos1,g,tmp);
/* Check the first result. */
SUB(pmt_dir,pmts[xs[0]].pos,pos1);
expected = t1 + NORM(pmt_dir)*n_d2o/SPEED_OF_LIGHT;
tmin = ev->pmt_hits[xs[0]].t;
for (j = 1; j < 4; j++) {
if (ev->pmt_hits[xs[j]].t < tmin)
tmin = ev->pmt_hits[xs[j]].t;
}
if (t1 < tmin && isclose(ev->pmt_hits[xs[0]].t,expected,0,1e-2)) {
if (NORM(pos1) < PSUP_RADIUS) {
results[nresults][0] = pos1[0];
results[nresults][1] = pos1[1];
results[nresults][2] = pos1[2];
results[nresults][3] = t1;
nresults++;
}
} else {
/* Check the second solution. */
t2 = (-b - sqrt(b*b - 4*a*c))/(2*a);
COPY(tmp,h);
MUL(tmp,c2*t2);
ADD(pos2,g,tmp);
SUB(pmt_dir,pmts[xs[0]].pos,pos2);
expected = t2 + NORM(pmt_dir)*n_d2o/SPEED_OF_LIGHT;
if (t2 < tmin && isclose(ev->pmt_hits[xs[0]].t,expected,0,1e-2)) {
if (NORM(pos2) < PSUP_RADIUS) {
results[nresults][0] = pos2[0];
results[nresults][1] = pos2[1];
results[nresults][2] = pos2[2];
results[nresults][3] = t2;
nresults++;
}
}
}
}
if (nresults < 1) {
sprintf(quad_err, "no valid quad points found!");
goto err;
}
/* Compute the permutation required to sort the results by t0. */
gsl_sort_index(reorder,&results[0][3],4,nresults);
/* Sort the results by t0. */
gsl_permute(reorder,&results[0][0],4,nresults);
gsl_permute(reorder,&results[0][1],4,nresults);
gsl_permute(reorder,&results[0][2],4,nresults);
gsl_permute(reorder,&results[0][3],4,nresults);
if (f > 0.0 && f < 1.0) {
/* Now, we filter only the results with t0 less than the quantile given
* by `f`. The idea here is that for high energy particles which travel
* macroscopic distances in the detector we want to only sample the
* quad points near the start of the track, i.e. the points with the
* earliest times. */
nresults = (int) (f*nresults);
}
/* Sort the x, y, z, and t0 columns so we can calculate the median. Note:
* The rows of the results array don't represent the quad cloud anymore
* since x, y, z, and t0 are mixed up! */
gsl_sort(&results[0][0],4,nresults);
gsl_sort(&results[0][1],4,nresults);
gsl_sort(&results[0][2],4,nresults);
gsl_sort(&results[0][3],4,nresults);
pos[0] = gsl_stats_median_from_sorted_data(&results[0][0],4,nresults);
pos[1] = gsl_stats_median_from_sorted_data(&results[0][1],4,nresults);
pos[2] = gsl_stats_median_from_sorted_data(&results[0][2],4,nresults);
*t0 = gsl_stats_median_from_sorted_data(&results[0][3],4,nresults);
gsl_permutation_free(p);
gsl_rng_free(r);
return 0;
err:
gsl_permutation_free(p);
gsl_rng_free(r);
return 1;
}
|