1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
|
#include "quad.h"
#include "event.h"
#include <gsl/gsl_randist.h>
#include <gsl/gsl_rng.h>
#include <unistd.h> /* for exit() */
#include <stdlib.h> /* for size_t */
#include <gsl/gsl_linalg.h>
#include "pdg.h"
#include "pmt.h"
#include <gsl/gsl_statistics_double.h>
#include "optics.h"
#include "vector.h"
#include "likelihood.h"
#include <gsl/gsl_sort.h>
#include <gsl/gsl_cblas.h>
#include "misc.h"
char quad_err[256];
/* Returns an approximate vertex position and time using the QUAD fitter.
*
* The QUAD fitter was originally developed for SNO and estimates the event
* vertex using a sort of Hough Transform[1]. It works by selecting 4 random
* PMT hits and computing the position and time of the event which is
* consistent with those hits. This procedure is repeated many times and the
* median of the resulting "quad cloud" is found as an estimate of the event
* position and time.
*
* Note: In the original formulation I believe instead of taking the median it
* used a minimization routine to find the position and time with the highest
* density of points, but since we are dealing with mostly high nhit events we
* just take the median because it is easier and quicker.
*
* `ev` should be a pointer to the event.
*
* `pos` is a pointer to a double array of length 3.
*
* `t0` is a pointer to a double.
*
* `npoints` is the number of quad cloud points to compute. This function will
* try to compute this many points, but it will stop trying after 10*npoints
* times to avoid an infinite loop.
*
* Returns 0 on success and `pos` and `t0` will be set to the approximate
* vertex position and time respectively. On error, returns -1 and sets the
* `quad_err` string.
*
* Example:
*
* double pos[3], t0;
* if (quad(&ev, pos, &t0, 1000)) {
* fprintf(stderr, "error running the quad fitter: %s\n", quad_err);
* goto err;
* }
*
* [1] The only reference to the QUAD fitter that I can find from the SNO days
* is Stephen Brice's PHD thesis which cites three SNO technical reports, but I
* haven't been able to find these. The first two of these reports are by Bill
* Frati who I assume wrote the initial implementation. */
int quad(event *ev, double *pos, double *t0, size_t npoints)
{
size_t i, j, k;
static int index[MAX_PMTS];
static int index2[MAX_PMTS];
int nhit;
const gsl_rng_type *T;
gsl_rng *r;
int xs[4];
size_t nresults;
double M[3][3], Minv[3][3];
double K[3], g[3], h[3], n[3], tmp[3];
double a, b, c;
double pos1[3], pos2[3];
static double results[QUAD_MAX][4];
double c2;
double wavelength0;
double n_d2o;
double t1, t2;
int s;
double pmt_dir[3];
double expected;
static double t[MAX_PMTS];
static size_t p2[MAX_PMTS];
double tmin;
size_t max_tries;
wavelength0 = 400.0;
n_d2o = get_index_snoman_d2o(wavelength0);
c2 = SPEED_OF_LIGHT*SPEED_OF_LIGHT/pow(n_d2o,2);
if (npoints > QUAD_MAX) {
sprintf(quad_err, "npoints must be less than %i", QUAD_MAX);
return 1;
}
nhit = 0;
for (i = 0; i < MAX_PMTS; i++) {
if (ev->pmt_hits[i].flags || pmts[i].pmt_type != PMT_NORMAL) continue;
if (ev->pmt_hits[i].hit) {
index[nhit] = i;
t[nhit] = ev->pmt_hits[i].t;
nhit++;
}
}
/* Only use the first 50% of the hits to avoid counting late/reflected
* light. */
k = nhit > 10 ? ceil(nhit/2.0) : nhit;
gsl_sort_smallest_index(p2,k,t,1,nhit);
/* Reorder the hits. */
for (i = 0; i < k; i++) {
index2[i] = index[p2[i]];
}
nhit = k;
if (nhit < 5) {
sprintf(quad_err, "only %i pmt hits. quad needs at least 5 points!", nhit);
return 1;
}
T = gsl_rng_default;
r = gsl_rng_alloc(T);
gsl_permutation *p = gsl_permutation_alloc(3);
i = 0;
max_tries = npoints*10;
nresults = 0;
while (nresults < npoints && i++ < max_tries) {
/* Choose 4 random hits. */
gsl_ran_choose(r,xs,4,index2,nhit,sizeof(int));
/* Shuffle them since GSL always returns the random choices in order.
*
* I'm not actually sure if that affects the quad calculation. */
gsl_ran_shuffle(r,xs,4,sizeof(int));
for (j = 1; j < 4; j++) {
for (k = 0; k < 3; k++) {
M[j-1][k] = pmts[xs[j]].pos[k] - pmts[xs[0]].pos[k];
}
n[j-1] = ev->pmt_hits[xs[j]].t - ev->pmt_hits[xs[0]].t;
K[j-1] = (c2*(pow(ev->pmt_hits[xs[0]].t,2) - pow(ev->pmt_hits[xs[j]].t,2)) - DOT(pmts[xs[0]].pos,pmts[xs[0]].pos) + DOT(pmts[xs[j]].pos,pmts[xs[j]].pos))/2;
}
gsl_matrix_view m = gsl_matrix_view_array(&M[0][0],3,3);
gsl_matrix_view minv = gsl_matrix_view_array(&Minv[0][0],3,3);
gsl_vector_view k_view = gsl_vector_view_array(K,3);
gsl_vector_view g_view = gsl_vector_view_array(g,3);
gsl_vector_view h_view = gsl_vector_view_array(h,3);
gsl_vector_view n_view = gsl_vector_view_array(n,3);
gsl_linalg_LU_decomp(&m.matrix, p, &s);
gsl_linalg_LU_invert(&m.matrix, p, &minv.matrix);
gsl_blas_dgemv(CblasNoTrans,1.0,&minv.matrix,&k_view.vector,0.0,&g_view.vector);
gsl_blas_dgemv(CblasNoTrans,1.0,&minv.matrix,&n_view.vector,0.0,&h_view.vector);
SUB(tmp,pmts[xs[0]].pos,g);
a = c2*(c2*DOT(h,h) - 1.0);
b = -2*c2*(DOT(tmp,h) - ev->pmt_hits[xs[0]].t);
c = DOT(tmp,tmp) - c2*pow(ev->pmt_hits[xs[0]].t,2);
if (b*b - 4*a*c < 0) continue;
t1 = (-b + sqrt(b*b - 4*a*c))/(2*a);
COPY(tmp,h);
MUL(tmp,c2*t1);
ADD(pos1,g,tmp);
/* Check the first result. */
SUB(pmt_dir,pmts[xs[0]].pos,pos1);
expected = t1 + NORM(pmt_dir)*n_d2o/SPEED_OF_LIGHT;
tmin = ev->pmt_hits[xs[0]].t;
for (j = 1; j < 4; j++) {
if (ev->pmt_hits[xs[j]].t < tmin)
tmin = ev->pmt_hits[xs[j]].t;
}
if (t1 < tmin && isclose(ev->pmt_hits[xs[0]].t,expected,0,1e-2)) {
results[nresults][0] = pos1[0];
results[nresults][1] = pos1[1];
results[nresults][2] = pos1[2];
results[nresults][3] = t1;
nresults++;
} else {
/* Check the second solution. */
t2 = (-b - sqrt(b*b - 4*a*c))/(2*a);
COPY(tmp,h);
MUL(tmp,c2*t2);
ADD(pos2,g,tmp);
SUB(pmt_dir,pmts[xs[0]].pos,pos2);
expected = t2 + NORM(pmt_dir)*n_d2o/SPEED_OF_LIGHT;
if (t2 < tmin && isclose(ev->pmt_hits[xs[0]].t,expected,0,1e-2)) {
results[nresults][0] = pos2[0];
results[nresults][1] = pos2[1];
results[nresults][2] = pos2[2];
results[nresults][3] = t2;
nresults++;
}
}
}
if (nresults < 1) {
sprintf(quad_err, "no valid quad points found!");
goto err;
}
gsl_sort(&results[0][0],4,nresults);
gsl_sort(&results[0][1],4,nresults);
gsl_sort(&results[0][2],4,nresults);
gsl_sort(&results[0][3],4,nresults);
pos[0] = gsl_stats_median_from_sorted_data(&results[0][0],4,nresults);
pos[1] = gsl_stats_median_from_sorted_data(&results[0][1],4,nresults);
pos[2] = gsl_stats_median_from_sorted_data(&results[0][2],4,nresults);
*t0 = gsl_stats_median_from_sorted_data(&results[0][3],4,nresults);
gsl_permutation_free(p);
gsl_rng_free(r);
return 0;
err:
gsl_permutation_free(p);
gsl_rng_free(r);
return 1;
}
|