aboutsummaryrefslogtreecommitdiff
path: root/src/path.c
blob: dff1dc76f66c215e5f6732e04373ff50591c3410 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
#include "path.h"
#include <math.h>
#include <gsl/gsl_spline.h>
#include <stddef.h> /* for size_t */
#include <gsl/gsl_integration.h>
#include "pdg.h"
#include "vector.h"
#include <stdlib.h> /* for malloc(), calloc(), etc. */

#define N 100

static double foo(double s, double range, double theta0, int k)
{
    return sqrt(2*pow(theta0,2)*range)*sin(M_PI*s*(k-0.5)/range)/(M_PI*(k-0.5));
}

double path_get_coefficient(unsigned int k, double *s, double *x, double theta0, size_t n)
{
    size_t i;
    double sum, range;

    range = s[n-1];

    sum = 0.0;
    for (i = 1; i < n; i++) {
        sum += (foo(s[i],range,theta0,k)*x[i] + foo(s[i-1],range,theta0,k)*x[i-1])*(s[i]-s[i-1])/2.0;
    }

    return sum*pow(k-0.5,2)*pow(M_PI,2)/pow(theta0*range,2);
}

path *path_init(double *pos, double *dir, double T0, double range, double theta0, getKineticEnergyFunc *fun, double *z1, double *z2, size_t n, double m)
{
    size_t i, j;
    double E, mom, beta, theta, phi;

    path *p = malloc(sizeof(path));

    p->theta0 = theta0;

    p->pos[0] = pos[0];
    p->pos[1] = pos[1];
    p->pos[2] = pos[2];

    p->dir[0] = dir[0];
    p->dir[1] = dir[1];
    p->dir[2] = dir[2];

    double *s = malloc(sizeof(double)*N);
    double *theta1 = calloc(N,sizeof(double));
    double *theta2 = calloc(N,sizeof(double));
    double *x = calloc(N,sizeof(double));
    double *y = calloc(N,sizeof(double));
    double *z = calloc(N,sizeof(double));
    double *T = calloc(N,sizeof(double));
    double *t = calloc(N,sizeof(double));
    double *dx = calloc(N,sizeof(double));
    double *dy = calloc(N,sizeof(double));
    double *dz = calloc(N,sizeof(double));

    dz[0] = 1.0;
    for (i = 0; i < N; i++) {
        s[i] = range*i/(N-1);
        for (j = 0; j < n; j++) {
            theta1[i] += z1[j]*foo(s[i],range,theta0,j+1);
            theta2[i] += z2[j]*foo(s[i],range,theta0,j+1);
        }
        T[i] = fun(s[i],T0);
        if (i > 0) {
            theta = sqrt(theta1[i]*theta1[i] + theta2[i]*theta2[i]);
            phi = atan2(theta2[i],theta1[i]);

            dx[i] = (s[i]-s[i-1])*sin(theta)*cos(phi);
            dy[i] = (s[i]-s[i-1])*sin(theta)*sin(phi);
            dz[i] = (s[i]-s[i-1])*cos(theta);

            /* Calculate total energy */
            E = T[i] + m;
            mom = sqrt(E*E - m*m);
            beta = mom/E;

            t[i] = t[i-1] + (s[i]-s[i-1])/(beta*SPEED_OF_LIGHT);

            x[i] = x[i-1] + dx[i];
            y[i] = y[i-1] + dy[i];
            z[i] = z[i-1] + dz[i];
        }
    }

    for (i = 0; i < 8; i++) {
        p->acc[i] = gsl_interp_accel_alloc();
        p->spline[i] = gsl_spline_alloc(gsl_interp_linear,N);
    }

    gsl_spline_init(p->spline[0],s,x,N);
    gsl_spline_init(p->spline[1],s,y,N);
    gsl_spline_init(p->spline[2],s,z,N);
    gsl_spline_init(p->spline[3],s,T,N);
    gsl_spline_init(p->spline[4],s,t,N);
    gsl_spline_init(p->spline[5],s,dx,N);
    gsl_spline_init(p->spline[6],s,dy,N);
    gsl_spline_init(p->spline[7],s,dz,N);

    free(s);
    free(theta1);
    free(theta2);
    free(x);
    free(y);
    free(z);
    free(T);
    free(t);
    free(dx);
    free(dy);
    free(dz);

    return p;
}

void path_eval(path *p, double s, double *pos, double *dir, double *T, double *t, double *theta0)
{
    double normal[3], k[3], tmp[3], phi;

    if (s > p->spline[0]->x[p->spline[0]->size-1])
        s = p->spline[0]->x[p->spline[0]->size-1];

    tmp[0] = gsl_spline_eval(p->spline[0],s,p->acc[0]);
    tmp[1] = gsl_spline_eval(p->spline[1],s,p->acc[1]);
    tmp[2] = gsl_spline_eval(p->spline[2],s,p->acc[2]);

    *T = gsl_spline_eval(p->spline[3],s,p->acc[3]);
    *t = gsl_spline_eval(p->spline[4],s,p->acc[4]);

    k[0] = 0.0;
    k[1] = 0.0;
    k[2] = 1.0;

    CROSS(normal,k,p->dir);

    normalize(normal);

    phi = acos(DOT(k,p->dir));

    rotate(pos,tmp,normal,phi);

    ADD(pos,pos,p->pos);

    tmp[0] = gsl_spline_eval(p->spline[5],s,p->acc[5]);
    tmp[1] = gsl_spline_eval(p->spline[6],s,p->acc[6]);
    tmp[2] = gsl_spline_eval(p->spline[7],s,p->acc[7]);

    normalize(tmp);

    rotate(dir,tmp,normal,phi);

    /* FIXME: This should be the *residual* scattering RMS. */
    *theta0 = p->theta0*sqrt(s);
}

void path_free(path *p)
{
    size_t i;

    for (i = 0; i < 5; i++) {
        gsl_interp_accel_free(p->acc[i]);
        gsl_spline_free(p->spline[i]);
    }

    free(p);
}