1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
|
#include "path.h"
#include <math.h>
#include <gsl/gsl_spline.h>
#include <stddef.h> /* for size_t */
#include <gsl/gsl_integration.h>
#include "pdg.h"
#include "vector.h"
#include <stdlib.h> /* for malloc(), calloc(), etc. */
#include "misc.h"
#include <gsl/gsl_sf_psi.h> /* for gsl_sf_psi_n() */
#include "scattering.h"
#define N 1000
static double foo(double s, double range, double theta0, int k)
{
return sqrt(2*pow(theta0,2)*range)*sin(M_PI*s*(k-0.5)/range)/(M_PI*(k-0.5));
}
double path_get_coefficient(unsigned int k, double *s, double *x, double theta0, size_t n)
{
size_t i;
double sum, range;
range = s[n-1];
sum = 0.0;
for (i = 1; i < n; i++) {
sum += (foo(s[i],range,theta0,k)*x[i] + foo(s[i-1],range,theta0,k)*x[i-1])*(s[i]-s[i-1])/2.0;
}
return sum*pow(k-0.5,2)*pow(M_PI,2)/pow(theta0*range,2);
}
path *path_init(double *pos, double *dir, double T0, double range, double theta0, getKineticEnergyFunc *fun, void *params, double *z1, double *z2, size_t n, double m)
{
size_t i, j;
double E, mom, beta, theta, phi;
double normal[3], k[3], tmp[3], tmp2[3];
path *p = malloc(sizeof(path));
p->pos[0] = pos[0];
p->pos[1] = pos[1];
p->pos[2] = pos[2];
p->dir[0] = dir[0];
p->dir[1] = dir[1];
p->dir[2] = dir[2];
p->n = n;
double *s = malloc(sizeof(double)*N);
double *theta1 = calloc(N,sizeof(double));
double *theta2 = calloc(N,sizeof(double));
double *x = calloc(N,sizeof(double));
double *y = calloc(N,sizeof(double));
double *z = calloc(N,sizeof(double));
double *T = calloc(N,sizeof(double));
double *t = calloc(N,sizeof(double));
double *dx = calloc(N,sizeof(double));
double *dy = calloc(N,sizeof(double));
double *dz = calloc(N,sizeof(double));
dz[0] = 1.0;
for (i = 0; i < N; i++) {
s[i] = range*i/(N-1);
for (j = 0; j < n; j++) {
theta1[i] += z1[j]*foo(s[i],range,theta0,j+1);
theta2[i] += z2[j]*foo(s[i],range,theta0,j+1);
}
T[i] = fun(s[i],params);
if (i > 0) {
theta = sqrt(theta1[i]*theta1[i] + theta2[i]*theta2[i]);
phi = atan2(theta2[i],theta1[i]);
dx[i] = (s[i]-s[i-1])*sin(theta)*cos(phi);
dy[i] = (s[i]-s[i-1])*sin(theta)*sin(phi);
dz[i] = (s[i]-s[i-1])*cos(theta);
/* Calculate total energy */
E = T[i] + m;
mom = sqrt(E*E - m*m);
beta = mom/E;
t[i] = t[i-1] + (s[i]-s[i-1])/(beta*SPEED_OF_LIGHT);
x[i] = x[i-1] + dx[i];
y[i] = y[i-1] + dy[i];
z[i] = z[i-1] + dz[i];
}
}
/* Now, we rotate and translate the path so that it starts at `pos` and
* points in the direction `dir`. */
/* We need to compute an arbitrary vector which is orthogonal to the
* direction vector. To do this, all we need is another vector not parallel
* to the direction. */
k[0] = 0.0;
k[1] = 0.0;
k[2] = 1.0;
/* If k is approximately equal to the unit vector in the z direction, we
* switch to the unit vector in the x direction. */
if (allclose(k,dir,3,1e-9,1e-9)) {
k[0] = 1.0;
k[1] = 0.0;
k[2] = 0.0;
}
/* Take the cross product between `k` and `dir` to get a vector orthogonal
* to `dir`. */
CROSS(normal,k,dir);
/* Make sure it's normalized. */
normalize(normal);
/* Compute the angle required to rotate the unit vector to `dir`. */
phi = acos(DOT(k,dir));
/* Now we rotate and translate all the positions and rotate all the
* directions. */
for (i = 0; i < N; i++) {
tmp[0] = x[i];
tmp[1] = y[i];
tmp[2] = z[i];
rotate(tmp2,tmp,normal,phi);
ADD(tmp2,tmp2,pos);
x[i] = tmp2[0];
y[i] = tmp2[1];
z[i] = tmp2[2];
tmp[0] = dx[i];
tmp[1] = dy[i];
tmp[2] = dz[i];
normalize(tmp);
rotate(tmp2,tmp,normal,phi);
dx[i] = tmp2[0];
dy[i] = tmp2[1];
dz[i] = tmp2[2];
}
/* Calculate the approximate residual scattering RMS.
*
* For a given truncated KL expansion the residual error in the
* approximation is given by:
*
* \sum_{n+1}^\infty sqrt(lambda_k)*sqrt(2/range)*sin(pi*s*(k-0.5)/range)
*
* Since there is no nice closed form solution for this, we estimate it by
* evaluating the result at the middle of the track. */
if (p->n > 0) {
p->theta0 = theta0*sqrt(range)*sqrt(gsl_sf_psi_n(1,p->n+0.5))/M_PI;
p->theta0 = fmax(MIN_THETA0, p->theta0);
p->theta0 = fmin(MAX_THETA0, p->theta0);
} else {
p->theta0 = theta0;
}
p->s = s;
p->x = x;
p->y = y;
p->z = z;
p->T = T;
p->t = t;
p->dx = dx;
p->dy = dy;
p->dz = dz;
free(theta1);
free(theta2);
return p;
}
void path_eval(path *p, double s, double *pos, double *dir, double *T, double *t, double *theta0)
{
pos[0] = interp1d(s,p->s,p->x,N);
pos[1] = interp1d(s,p->s,p->y,N);
pos[2] = interp1d(s,p->s,p->z,N);
*T = interp1d(s,p->s,p->T,N);
*t = interp1d(s,p->s,p->t,N);
/* Technically we should be interpolating between the direction vectors
* using an algorithm like Slerp (see https://en.wikipedia.org/wiki/Slerp),
* but since we expect the direction vectors to be pretty close to each
* other, we just linearly interpolate and then normalize it. */
dir[0] = interp1d(s,p->s,p->dx,N);
dir[1] = interp1d(s,p->s,p->dy,N);
dir[2] = interp1d(s,p->s,p->dz,N);
normalize(dir);
if (p->n > 0) {
*theta0 = p->theta0;
} else {
*theta0 = fmax(MIN_THETA0,p->theta0*sqrt(s));
*theta0 = fmin(MAX_THETA0,*theta0);
}
}
void path_free(path *p)
{
free(p->s);
free(p->x);
free(p->y);
free(p->z);
free(p->T);
free(p->t);
free(p->dx);
free(p->dy);
free(p->dz);
free(p);
}
|