aboutsummaryrefslogtreecommitdiff
path: root/src/muon.c
blob: 02cf55a8828c2c44c8293ef02766bc5474c8514d (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
#include <stdio.h>
#include <errno.h>
#include <string.h>
#include <stdlib.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_spline.h>
#include <math.h>
#include "optics.h"
#include "quantum_efficiency.h"
#include "solid_angle.h"
#include "pdg.h"
#include "vector.h"
#include "muon.h"
#include "sno.h"
#include "scattering.h"
#include "pmt_response.h"
#include "misc.h"

static int initialized = 0;

static double *x, *dEdx, *csda_range;
static size_t size;

static gsl_interp_accel *acc_dEdx;
static gsl_spline *spline_dEdx;

static gsl_interp_accel *acc_range;
static gsl_spline *spline_range;

/* Muon critical energy in H2O and D2O. These values are used in computing the
 * kinetic energy of the muon as a function of distance in get_T().
 *
 * These values come from
 * http://pdgprod.lbl.gov/~deg/AtomicNuclearProperties/HTML/deuterium_oxide_liquid.html for D2O and
 * http://pdg.lbl.gov/2018/AtomicNuclearProperties/HTML/water_liquid.html for H2O.
 */
static const double MUON_CRITICAL_ENERGY_H2O = 1029.0e6;
static const double MUON_CRITICAL_ENERGY_D2O = 967.0e3;

static int init()
{
    int i, j;
    char line[256];
    char *str;
    double value;
    int n;

    FILE *f = fopen("muE_deuterium_oxide_liquid.txt", "r");

    if (!f) {
        fprintf(stderr, "failed to open muE_water_liquid.txt: %s\n", strerror(errno));
        return -1;
    }

    i = 0;
    n = 0;
    /* For the first pass, we just count how many values there are. */
    while (fgets(line, sizeof(line), f)) {
        size_t len = strlen(line);
        if (len && (line[len-1] != '\n')) {
            fprintf(stderr, "got incomplete line on line %i: '%s'\n", i, line);
            goto err;
        }

        i += 1;

        /* Skip the first 10 lines since it's just a header. */
        if (i <= 10) continue;

        if (!len) continue;
        else if (line[0] == '#') continue;
        else if (strstr(line, "Minimum ionization")) continue;
        else if (strstr(line, "Muon critical energy")) continue;

        str = strtok(line," \n");

        while (str) {
            value = strtod(str, NULL);
            str = strtok(NULL," \n");
        }

        n += 1;
    }

    x = malloc(sizeof(double)*n);
    dEdx = malloc(sizeof(double)*n);
    csda_range = malloc(sizeof(double)*n);
    size = n;

    i = 0;
    n = 0;
    /* Now, we actually store the values. */
    rewind(f);
    while (fgets(line, sizeof(line), f)) {
        size_t len = strlen(line);
        if (len && (line[len-1] != '\n')) {
            fprintf(stderr, "got incomplete line on line %i: '%s'\n", i, line);
            goto err;
        }

        i += 1;

        /* Skip the first 10 lines since it's just a header. */
        if (i <= 10) continue;

        if (!len) continue;
        else if (line[0] == '#') continue;
        else if (strstr(line, "Minimum ionization")) continue;
        else if (strstr(line, "Muon critical energy")) continue;

        str = strtok(line," \n");

        j = 0;
        while (str) {
            value = strtod(str, NULL);
            switch (j) {
            case 0:
                x[n] = value;
                break;
            case 7:
                dEdx[n] = value;
                break;
            case 8:
                csda_range[n] = value;
                break;
            }
            j += 1;
            str = strtok(NULL," \n");
        }

        n += 1;
    }

    fclose(f);

    acc_dEdx = gsl_interp_accel_alloc();
    spline_dEdx = gsl_spline_alloc(gsl_interp_linear, size);
    gsl_spline_init(spline_dEdx, x, dEdx, size);

    acc_range = gsl_interp_accel_alloc();
    spline_range = gsl_spline_alloc(gsl_interp_linear, size);
    gsl_spline_init(spline_range, x, csda_range, size);

    initialized = 1;

    return 0;

err:
    fclose(f);

    return -1;
}

double muon_get_range(double T, double rho)
{
    /* Returns the approximate range a muon with kinetic energy `T` will travel
     * in water before losing all of its energy. This range is interpolated
     * based on data from the PDG which uses the continuous slowing down
     * approximation.
     *
     * `T` should be in MeV, and `rho` should be in g/cm^3.
     *
     * Return value is in cm.
     *
     * See http://pdg.lbl.gov/2018/AtomicNuclearProperties/adndt.pdf. */
    if (!initialized) {
        if (init()) {
            exit(1);
        }
    }

    return gsl_spline_eval(spline_range, T, acc_range)/rho;
}

double muon_get_dEdx(double T, double rho)
{
    /* Returns the approximate dE/dx for a muon in water with kinetic energy
     * `T`.
     *
     * `T` should be in MeV and `rho` in g/cm^3.
     *
     * Return value is in MeV/cm.
     *
     * See http://pdg.lbl.gov/2018/AtomicNuclearProperties/adndt.pdf. */
    if (!initialized) {
        if (init()) {
            exit(1);
        }
    }

    if (T < spline_dEdx->x[0]) return spline_dEdx->y[0];

    return gsl_spline_eval(spline_dEdx, T, acc_dEdx)*rho;
}