aboutsummaryrefslogtreecommitdiff
path: root/src/muon.c
blob: 684144145bd26a7409522715a0c2b7143b4efdee (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
/* Copyright (c) 2019, Anthony Latorre <tlatorre at uchicago>
 *
 * This program is free software: you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the Free
 * Software Foundation, either version 3 of the License, or (at your option)
 * any later version.

 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
 * more details.

 * You should have received a copy of the GNU General Public License along with
 * this program. If not, see <https://www.gnu.org/licenses/>.
 */

#include <stdio.h>
#include <errno.h>
#include <string.h>
#include <stdlib.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_spline.h>
#include <math.h>
#include "optics.h"
#include "quantum_efficiency.h"
#include "solid_angle.h"
#include "pdg.h"
#include "vector.h"
#include "muon.h"
#include "sno.h"
#include "scattering.h"
#include "pmt_response.h"
#include "misc.h"
#include "util.h"

static int initialized = 0;

static double *x, *dEdx_rad, *dEdx, *csda_range;
static size_t size;

static gsl_interp_accel *acc_dEdx_rad;
static gsl_spline *spline_dEdx_rad;

static gsl_interp_accel *acc_dEdx;
static gsl_spline *spline_dEdx;

static gsl_interp_accel *acc_range;
static gsl_spline *spline_range;

/* Muon critical energy in H2O and D2O. These values are used in computing the
 * kinetic energy of the muon as a function of distance in get_T().
 *
 * These values come from
 * http://pdgprod.lbl.gov/~deg/AtomicNuclearProperties/HTML/deuterium_oxide_liquid.html for D2O and
 * http://pdg.lbl.gov/2018/AtomicNuclearProperties/HTML/water_liquid.html for H2O.
 */
static const double MUON_CRITICAL_ENERGY_H2O = 1029.0e6;
static const double MUON_CRITICAL_ENERGY_D2O = 967.0e3;

/* Returns the average number of Cerenkov photons in the range 200-800 nm
 * produced by secondary particles in a muon shower.
 *
 * This comes from fitting the ratio # shower photons/rad loss to the function:
 *
 *     c0*(1-exp(-T/c1))
 *
 * I don't really have any good theoretical motivation for this. My initial
 * thought was that the number of photons should be roughly proportional to the
 * energy lost due to radiation which is why I chose to fit the ratio.
 *
 * This functional form just happened to fit the ratio as a function of energy
 * pretty well from 300 MeV to 10 GeV. At 10 GeV, it looks like the ratio is
 * starting to decrease so a different form for energies past that is probably
 * needed.
 *
 * `T0` is the initial kinetic energy of the electron in MeV and `rad` is the
 * energy lost due to radiation in MeV. */
double muon_get_shower_photons(double T0, double rad)
{
    return rad*(9.288929e+03*(1 - exp(-T0/8.403863e+02)));
}

void muon_get_position_distribution_parameters(double T0, double *a, double *b)
{
    /* Computes the gamma distribution parameters describing the longitudinal
     * profile of the photons generated from an electromagnetic shower.
     *
     * From the PDG "Passage of Particles" section 32.5:
     *
     * "The mean longitudinal profile of the energy deposition in an
     * electromagnetic cascade is reasonably well described by a gamma
     * distribution."
     *
     * Here we use a slightly different form of the gamma distribution:
     *
     *     f(x) = x**(a-1)*exp(-x/b)/(Gamma(a)*b**a)
     *
     * I determined a and b by simulating high energy muons using
     * RAT-PAC and fitting the histogram of the position of all photons as a
     * function of the distance along the track length.
     *
     * Note: Unlike the case of a shower produced by an electron, the
     * distribution of photons from high energy muons does not seem to follow a
     * gamma distribution very well. In addition, the numbers I use here are
     * really approximate. The b parameter was obtained by a single degree
     * polynomial fit because it looked pretty good, but for the a parameter, I
     * couldn't find any functional form that would describe it well as a
     * function of energy and so I decided to just approximate it by a
     * constant.
     *
     * FIXME: Should update this in the future.
     *
     * `T` should be in units of MeV.
     *
     * Example:
     *
     *     double a, b;
     *     muon_get_position_distribution_parameters(1000.0, &a, &b);
     *     double pdf = gamma_pdf(x, a, b);
     *
     * See http://pdg.lbl.gov/2014/reviews/rpp2014-rev-passage-particles-matter.pdf.
     *
     * FIXME: Double check that this is correct for muons. */
    *b = fmax(20.0,-7.8 + 0.118928*T0);
    *a = 1.5;
}

double muon_get_angular_distribution_alpha(double T0)
{
    /* To describe the angular distribution of photons in an electromagnetic
     * shower I came up with the heuristic form:
     *
     *     f(cos_theta) ~ exp(-abs(cos_theta-mu)^alpha/beta)
     *
     * I simulated high energy muons using RAT-PAC in heavy water to fit
     * for the alpha and beta parameters as a function of energy and determined
     * that a reasonably good fit to the data was:
     *
     *     alpha = c0 + c1/log(c2*T0 + c3)
     *
     * where T0 is the initial energy of the muon in MeV and c0, c1, c2,
     * and c3 are constants which I fit out. */
    return fmin(100.0,8.238633e-01 + 3.896665e-03/log(1.581060e-05*T0 + 9.991576e-01));
}

double muon_get_angular_distribution_beta(double T0)
{
    /* To describe the angular distribution of photons in an electromagnetic
     * shower I came up with the heuristic form:
     *
     * f(cos_theta) ~ exp(-abs(cos_theta-mu)^alpha/beta)
     *
     * I simulated high energy muons using RAT-PAC in heavy water to fit
     * for the alpha and beta parameters as a function of energy and determined
     * that a reasonably good fit to the data was:
     *
     * beta = c0 + c1/log(c2*T0 + c3)
     *
     * where T0 is the initial energy of the muon in MeV and c0, c1, c2,
     * and c3 are constants which I fit out. */
    return 2.236058e-01 + 5.376336e-03/log(1.200215e-05*T0 + 1.002540e+00);
}

double muon_get_delta_ray_photons(double T0)
{
    /* Returns the number of photons in the range 200-800 nm produced by delta
     * rays.
     *
     * This comes from a simple polynomial fit to the number of photons
     * generated by simulating muons using RAT-PAC in heavy water. */
    return fmax(0.0,-7532.39 + 39.4548*T0);
}

void muon_get_delta_ray_distribution_parameters(double T0, double *a, double *b)
{
    /* To describe the angular distribution of photons from delta rays I use
     * the same heuristic form as used for electromagnetic showers:
     *
     * f(cos_theta) ~ exp(-abs(cos_theta-mu)^alpha/beta)
     *
     * I simulated high energy muons using RAT-PAC in heavy water to fit
     * for the alpha and beta parameters as a function of energy and determined
     * that a reasonably good fit to the data was:
     *
     * beta = c0 + c1/log(c2*T0 + c3)
     *
     * where T0 is the initial energy of the muon in MeV and c0, c1, c2,
     * and c3 are constants which I fit out. */
    *a = fmin(100.0,3.463093e-01 + 1.110835e-02/log(5.662948e-06*T0 + 1.009215e+00));
    *b = 2.297358e-01 + 4.085721e-03/log(8.218774e-06*T0 + 1.007135e+00);

    return;
}

static int init()
{
    int i, j;
    char line[256];
    char *str;
    double value;
    int n;

    FILE *f = open_file("muE_deuterium_oxide_liquid.txt", "r");

    if (!f) {
        fprintf(stderr, "failed to open muE_water_liquid.txt: %s\n", strerror(errno));
        return -1;
    }

    i = 0;
    n = 0;
    /* For the first pass, we just count how many values there are. */
    while (fgets(line, sizeof(line), f)) {
        size_t len = strlen(line);
        if (len && (line[len-1] != '\n')) {
            fprintf(stderr, "got incomplete line on line %i: '%s'\n", i, line);
            goto err;
        }

        i += 1;

        /* Skip the first 10 lines since it's just a header. */
        if (i <= 10) continue;

        if (!len) continue;
        else if (line[0] == '#') continue;
        else if (strstr(line, "Minimum ionization")) continue;
        else if (strstr(line, "Muon critical energy")) continue;

        str = strtok(line," \n");

        while (str) {
            value = strtod(str, NULL);
            str = strtok(NULL," \n");
        }

        n += 1;
    }

    x = malloc(sizeof(double)*n);
    dEdx_rad = malloc(sizeof(double)*n);
    dEdx = malloc(sizeof(double)*n);
    csda_range = malloc(sizeof(double)*n);
    size = n;

    i = 0;
    n = 0;
    /* Now, we actually store the values. */
    rewind(f);
    while (fgets(line, sizeof(line), f)) {
        size_t len = strlen(line);
        if (len && (line[len-1] != '\n')) {
            fprintf(stderr, "got incomplete line on line %i: '%s'\n", i, line);
            goto err;
        }

        i += 1;

        /* Skip the first 10 lines since it's just a header. */
        if (i <= 10) continue;

        if (!len) continue;
        else if (line[0] == '#') continue;
        else if (strstr(line, "Minimum ionization")) continue;
        else if (strstr(line, "Muon critical energy")) continue;

        str = strtok(line," \n");

        j = 0;
        while (str) {
            value = strtod(str, NULL);
            switch (j) {
            case 0:
                x[n] = value;
                break;
            case 6:
                dEdx_rad[n] = value;
                break;
            case 7:
                dEdx[n] = value;
                break;
            case 8:
                csda_range[n] = value;
                break;
            }
            j += 1;
            str = strtok(NULL," \n");
        }

        n += 1;
    }

    fclose(f);

    acc_dEdx_rad = gsl_interp_accel_alloc();
    spline_dEdx_rad = gsl_spline_alloc(gsl_interp_linear, size);
    gsl_spline_init(spline_dEdx_rad, x, dEdx_rad, size);

    acc_dEdx = gsl_interp_accel_alloc();
    spline_dEdx = gsl_spline_alloc(gsl_interp_linear, size);
    gsl_spline_init(spline_dEdx, x, dEdx, size);

    acc_range = gsl_interp_accel_alloc();
    spline_range = gsl_spline_alloc(gsl_interp_linear, size);
    gsl_spline_init(spline_range, x, csda_range, size);

    initialized = 1;

    return 0;

err:
    fclose(f);

    return -1;
}

/* Returns the maximum kinetic energy for a muon in the range tables.
 *
 * If you call muon_get_range() or muon_get_dEdx() with a kinetic energy higher
 * you will get a GSL interpolation error. */
double muon_get_max_energy(void)
{
    if (!initialized) {
        if (init()) {
            exit(1);
        }
    }

    return x[size-1];
}

double muon_get_range(double T, double rho)
{
    /* Returns the approximate range a muon with kinetic energy `T` will travel
     * in water before losing all of its energy. This range is interpolated
     * based on data from the PDG which uses the continuous slowing down
     * approximation.
     *
     * `T` should be in MeV, and `rho` should be in g/cm^3.
     *
     * Return value is in cm.
     *
     * See http://pdg.lbl.gov/2018/AtomicNuclearProperties/adndt.pdf. */
    if (!initialized) {
        if (init()) {
            exit(1);
        }
    }

    return gsl_spline_eval(spline_range, T, acc_range)/rho;
}

double muon_get_dEdx_rad(double T, double rho)
{
    /* Returns the approximate radiative dE/dx for a muon in water with kinetic
     * energy `T`.
     *
     * `T` should be in MeV and `rho` in g/cm^3.
     *
     * Return value is in MeV/cm.
     *
     * See http://pdg.lbl.gov/2018/AtomicNuclearProperties/adndt.pdf. */
    if (!initialized) {
        if (init()) {
            exit(1);
        }
    }

    if (T < spline_dEdx_rad->x[0]) return spline_dEdx_rad->y[0];

    return gsl_spline_eval(spline_dEdx_rad, T, acc_dEdx_rad)*rho;
}

double muon_get_dEdx(double T, double rho)
{
    /* Returns the approximate dE/dx for a muon in water with kinetic energy
     * `T`.
     *
     * `T` should be in MeV and `rho` in g/cm^3.
     *
     * Return value is in MeV/cm.
     *
     * See http://pdg.lbl.gov/2018/AtomicNuclearProperties/adndt.pdf. */
    if (!initialized) {
        if (init()) {
            exit(1);
        }
    }

    if (T < spline_dEdx->x[0]) return spline_dEdx->y[0];

    return gsl_spline_eval(spline_dEdx, T, acc_dEdx)*rho;
}