1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
|
#include <stdio.h>
#include <errno.h>
#include <string.h>
#include <stdlib.h>
#include <gsl/gsl_errno.h>
#include <gsl/gsl_spline.h>
#include <math.h>
#include "optics.h"
#include "quantum_efficiency.h"
#include "solid_angle.h"
#include "pdg.h"
#include "vector.h"
#include "muon.h"
#include "sno.h"
#include "scattering.h"
static int initialized = 0;
static double *x, *dEdx, *csda_range;
static size_t size;
static gsl_interp_accel *acc_dEdx;
static gsl_spline *spline_dEdx;
static gsl_interp_accel *acc_range;
static gsl_spline *spline_range;
static const double MUON_CRITICAL_ENERGY = 1.029e6;
static int init()
{
int i, j;
char line[256];
char *str;
double value;
int n;
FILE *f = fopen("muE_deuterium_oxide_liquid.txt", "r");
if (!f) {
fprintf(stderr, "failed to open muE_water_liquid.txt: %s", strerror(errno));
return -1;
}
i = 0;
n = 0;
/* For the first pass, we just count how many values there are. */
while (fgets(line, sizeof(line), f)) {
size_t len = strlen(line);
if (len && (line[len-1] != '\n')) {
fprintf(stderr, "got incomplete line on line %i: '%s'\n", i, line);
goto err;
}
i += 1;
/* Skip the first 10 lines since it's just a header. */
if (i <= 10) continue;
if (!len) continue;
else if (line[0] == '#') continue;
else if (strstr(line, "Minimum ionization")) continue;
else if (strstr(line, "Muon critical energy")) continue;
str = strtok(line," \n");
while (str) {
value = strtod(str, NULL);
str = strtok(NULL," \n");
}
n += 1;
}
x = malloc(sizeof(double)*n);
dEdx = malloc(sizeof(double)*n);
csda_range = malloc(sizeof(double)*n);
size = n;
i = 0;
n = 0;
/* Now, we actually store the values. */
rewind(f);
while (fgets(line, sizeof(line), f)) {
size_t len = strlen(line);
if (len && (line[len-1] != '\n')) {
fprintf(stderr, "got incomplete line on line %i: '%s'\n", i, line);
goto err;
}
i += 1;
/* Skip the first 10 lines since it's just a header. */
if (i <= 10) continue;
if (!len) continue;
else if (line[0] == '#') continue;
else if (strstr(line, "Minimum ionization")) continue;
else if (strstr(line, "Muon critical energy")) continue;
str = strtok(line," \n");
j = 0;
while (str) {
value = strtod(str, NULL);
switch (j) {
case 0:
x[n] = value;
break;
case 7:
dEdx[n] = value;
break;
case 8:
csda_range[n] = value;
break;
}
j += 1;
str = strtok(NULL," \n");
}
n += 1;
}
fclose(f);
acc_dEdx = gsl_interp_accel_alloc();
spline_dEdx = gsl_spline_alloc(gsl_interp_linear, size);
gsl_spline_init(spline_dEdx, x, dEdx, size);
acc_range = gsl_interp_accel_alloc();
spline_range = gsl_spline_alloc(gsl_interp_linear, size);
gsl_spline_init(spline_range, x, csda_range, size);
initialized = 1;
return 0;
err:
fclose(f);
return -1;
}
double get_range(double T, double rho)
{
/* Returns the approximate range a muon with kinetic energy `T` will travel
* in water before losing all of its energy. This range is interpolated
* based on data from the PDG which uses the continuous slowing down
* approximation.
*
* `T` should be in MeV, and `rho` should be in g/cm^3.
*
* Return value is in cm.
*
* See http://pdg.lbl.gov/2018/AtomicNuclearProperties/adndt.pdf. */
if (!initialized) {
if (init()) {
exit(1);
}
}
return gsl_spline_eval(spline_range, T, acc_range)/rho;
}
double get_T(double T0, double x, double rho)
{
/* Returns the approximate kinetic energy of a muon in water after
* travelling `x` cm with an initial kinetic energy `T`.
*
* `T` should be in MeV, `x` in cm, and `rho` in g/cm^3.
*
* Return value is in MeV.
*
* See http://pdg.lbl.gov/2018/AtomicNuclearProperties/adndt.pdf. */
double a, b, range, T;
if (!initialized) {
if (init()) {
exit(1);
}
}
range = get_range(T0, rho);
/* This comes from Equation 33.42 in the PDG Passage of Particles Through
* Matter article. */
b = log(1 + T0/MUON_CRITICAL_ENERGY)/range;
/* Now we compute the ionization energy loss from the known range and b. */
a = b*T0/(exp(b*range)-1.0);
/* Compute the kinetic energy after travelling a distance `x` in the
* continuous slowing down approximation. */
T = -a/b + (T0+a/b)*exp(-b*x);
if (T < 0) return 0;
return T;
}
double get_dEdx(double T, double rho)
{
/* Returns the approximate dE/dx for a muon in water with kinetic energy
* `T`.
*
* `T` should be in MeV and `rho` in g/cm^3.
*
* Return value is in MeV/cm.
*
* See http://pdg.lbl.gov/2018/AtomicNuclearProperties/adndt.pdf. */
if (!initialized) {
if (init()) {
exit(1);
}
}
return gsl_spline_eval(spline_dEdx, T, acc_dEdx)/rho;
}
double get_expected_charge(double x, double T, double *pos, double *dir, double *pmt_pos, double *pmt_normal, double r)
{
double pmt_dir[3], cos_theta, n, wavelength0, omega, theta0, E, p, beta, z, rho, R;
z = 1.0;
SUB(pmt_dir,pmt_pos,pos);
normalize(pmt_dir);
if (DOT(pmt_dir,pmt_normal) > 0) return 0;
/* Calculate the cosine of the angle between the track direction and the
* vector to the PMT. */
cos_theta = DOT(dir,pmt_dir);
/* Calculate total energy */
E = T + MUON_MASS;
p = sqrt(E*E - MUON_MASS*MUON_MASS);
beta = p/E;
omega = get_solid_angle_approx(pos,pmt_pos,pmt_normal,r);
R = NORM(pos);
if (R <= AV_RADIUS) {
rho = HEAVY_WATER_DENSITY;
} else {
rho = WATER_DENSITY;
}
/* FIXME: I just calculate delta assuming 400 nm light. */
wavelength0 = 400.0;
n = get_index(rho, wavelength0, 10.0);
if (beta < 1/n) return 0;
/* FIXME: is this formula valid for muons? */
theta0 = get_scattering_rms(x,p,beta,z,rho);
/* FIXME: add angular response and scattering/absorption. */
return 2*omega*2*M_PI*FINE_STRUCTURE_CONSTANT*z*z*(1-(1/(beta*beta*n*n)))*get_probability(beta, cos_theta, theta0)/(sqrt(2*M_PI)*theta0);
}
|