aboutsummaryrefslogtreecommitdiff
path: root/src/mt19937ar.h
blob: bad261e91ca9ad469f3df065c65d938456cb4050 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
/* Copyright (c) 2019, Anthony Latorre <tlatorre at uchicago>
 *
 * This program is free software: you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the Free
 * Software Foundation, either version 3 of the License, or (at your option)
 * any later version.

 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
 * more details.

 * You should have received a copy of the GNU General Public License along with
 * this program. If not, see <https://www.gnu.org/licenses/>.
 */

#ifndef MT19937AR_H
#define MT19937AR_H

void init_genrand(unsigned long s);

/* initialize by an array with array-length */
/* init_key is the array for initializing keys */
/* key_length is its length */
/* slight change for C++, 2004/2/26 */
void init_by_array(unsigned long init_key[], int key_length);

/* generates a random number on [0,0xffffffff]-interval */
unsigned long genrand_int32(void);

/* generates a random number on [0,0x7fffffff]-interval */
long genrand_int31(void);

/* generates a random number on [0,1]-real-interval */
double genrand_real1(void);

/* generates a random number on [0,1)-real-interval */
double genrand_real2(void);

/* generates a random number on (0,1)-real-interval */
double genrand_real3(void);

/* generates a random number on [0,1) with 53-bit resolution*/
double genrand_res53(void) ;

#endif
29 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219
/* Hash Tables Implementation.
 *
 * This file implements in memory hash tables with insert/del/replace/find/
 * get-random-element operations. Hash tables will auto resize if needed
 * tables of power of two in size are used, collisions are handled by
 * chaining. See the source code for more information... :)
 *
 * Copyright (c) 2006-2012, Salvatore Sanfilippo <antirez at gmail dot com>
 * All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions are met:
 *
 *   * Redistributions of source code must retain the above copyright notice,
 *     this list of conditions and the following disclaimer.
 *   * Redistributions in binary form must reproduce the above copyright
 *     notice, this list of conditions and the following disclaimer in the
 *     documentation and/or other materials provided with the distribution.
 *   * Neither the name of Redis nor the names of its contributors may be used
 *     to endorse or promote products derived from this software without
 *     specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
 * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
 * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
 * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
 * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
 * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
 * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
 * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
 * POSSIBILITY OF SUCH DAMAGE.
 */

#include "fmacros.h"

#include <stdio.h>
#include <stdlib.h>
#include <stdint.h>
#include <string.h>
#include <stdarg.h>
#include <limits.h>
#include <sys/time.h>

#include "dict.h"
#include <assert.h>

/* Using dictEnableResize() / dictDisableResize() we make possible to
 * enable/disable resizing of the hash table as needed. This is very important
 * for Redis, as we use copy-on-write and don't want to move too much memory
 * around when there is a child performing saving operations.
 *
 * Note that even when dict_can_resize is set to 0, not all resizes are
 * prevented: a hash table is still allowed to grow if the ratio between
 * the number of elements and the buckets > dict_force_resize_ratio. */
static int dict_can_resize = 1;
static unsigned int dict_force_resize_ratio = 5;

/* -------------------------- private prototypes ---------------------------- */

static int _dictExpandIfNeeded(dict *ht);
static unsigned long _dictNextPower(unsigned long size);
static long _dictKeyIndex(dict *ht, const void *key, uint64_t hash, dictEntry **existing);
static int _dictInit(dict *ht, dictType *type, void *privDataPtr);

/* -------------------------- hash functions -------------------------------- */

static uint8_t dict_hash_function_seed[16];

void dictSetHashFunctionSeed(uint8_t *seed) {
    memcpy(dict_hash_function_seed,seed,sizeof(dict_hash_function_seed));
}

uint8_t *dictGetHashFunctionSeed(void) {
    return dict_hash_function_seed;
}

/* The default hashing function uses SipHash implementation
 * in siphash.c. */

uint64_t siphash(const uint8_t *in, const size_t inlen, const uint8_t *k);
uint64_t siphash_nocase(const uint8_t *in, const size_t inlen, const uint8_t *k);

uint64_t dictGenHashFunction(const void *key, int len) {
    return siphash(key,len,dict_hash_function_seed);
}

uint64_t dictGenCaseHashFunction(const unsigned char *buf, int len) {
    return siphash_nocase(buf,len,dict_hash_function_seed);
}

/* ----------------------------- API implementation ------------------------- */

/* Reset a hash table already initialized with ht_init().
 * NOTE: This function should only be called by ht_destroy(). */
static void _dictReset(dictht *ht)
{
    ht->table = NULL;
    ht->size = 0;
    ht->sizemask = 0;
    ht->used = 0;
}

/* Create a new hash table */
dict *dictCreate(dictType *type,
        void *privDataPtr)
{
    dict *d = malloc(sizeof(*d));

    _dictInit(d,type,privDataPtr);
    return d;
}

/* Initialize the hash table */
int _dictInit(dict *d, dictType *type,
        void *privDataPtr)
{
    _dictReset(&d->ht[0]);
    _dictReset(&d->ht[1]);
    d->type = type;
    d->privdata = privDataPtr;
    d->rehashidx = -1;
    d->iterators = 0;
    return DICT_OK;
}

/* Resize the table to the minimal size that contains all the elements,
 * but with the invariant of a USED/BUCKETS ratio near to <= 1 */
int dictResize(dict *d)
{
    int minimal;

    if (!dict_can_resize || dictIsRehashing(d)) return DICT_ERR;
    minimal = d->ht[0].used;
    if (minimal < DICT_HT_INITIAL_SIZE)
        minimal = DICT_HT_INITIAL_SIZE;
    return dictExpand(d, minimal);
}

/* Expand or create the hash table */
int dictExpand(dict *d, unsigned long size)
{
    /* the size is invalid if it is smaller than the number of
     * elements already inside the hash table */
    if (dictIsRehashing(d) || d->ht[0].used > size)
        return DICT_ERR;

    dictht n; /* the new hash table */
    unsigned long realsize = _dictNextPower(size);

    /* Rehashing to the same table size is not useful. */
    if (realsize == d->ht[0].size) return DICT_ERR;

    /* Allocate the new hash table and initialize all pointers to NULL */
    n.size = realsize;
    n.sizemask = realsize-1;
    n.table = calloc(realsize*sizeof(dictEntry*),1);
    n.used = 0;

    /* Is this the first initialization? If so it's not really a rehashing
     * we just set the first hash table so that it can accept keys. */
    if (d->ht[0].table == NULL) {
        d->ht[0] = n;
        return DICT_OK;
    }

    /* Prepare a second hash table for incremental rehashing */
    d->ht[1] = n;
    d->rehashidx = 0;
    return DICT_OK;
}

/* Performs N steps of incremental rehashing. Returns 1 if there are still
 * keys to move from the old to the new hash table, otherwise 0 is returned.
 *
 * Note that a rehashing step consists in moving a bucket (that may have more
 * than one key as we use chaining) from the old to the new hash table, however
 * since part of the hash table may be composed of empty spaces, it is not
 * guaranteed that this function will rehash even a single bucket, since it
 * will visit at max N*10 empty buckets in total, otherwise the amount of
 * work it does would be unbound and the function may block for a long time. */
int dictRehash(dict *d, int n) {
    int empty_visits = n*10; /* Max number of empty buckets to visit. */
    if (!dictIsRehashing(d)) return 0;

    while(n-- && d->ht[0].used != 0) {
        dictEntry *de, *nextde;

        /* Note that rehashidx can't overflow as we are sure there are more
         * elements because ht[0].used != 0 */
        assert(d->ht[0].size > (unsigned long)d->rehashidx);
        while(d->ht[0].table[d->rehashidx] == NULL) {
            d->rehashidx++;
            if (--empty_visits == 0) return 1;
        }
        de = d->ht[0].table[d->rehashidx];
        /* Move all the keys in this bucket from the old to the new hash HT */
        while(de) {
            uint64_t h;

            nextde = de->next;
            /* Get the index in the new hash table */
            h = dictHashKey(d, de->key) & d->ht[1].sizemask;
            de->next = d->ht[1].table[h];
            d->ht[1].table[h] = de;
            d->ht[0].used--;
            d->ht[1].used++;
            de = nextde;
        }
        d->ht[0].table[d->rehashidx] = NULL;
        d->rehashidx++;
    }

    /* Check if we already rehashed the whole table... */
    if (d->ht[0].used == 0) {
        free(d->ht[0].table);
        d->ht[0] = d->ht[1];
        _dictReset(&d->ht[1]);
        d->rehashidx = -1;
        return 0;
    }

    /* More to rehash... */
    return 1;
}

long long timeInMilliseconds(void) {
    struct timeval tv;

    gettimeofday(&tv,NULL);
    return (((long long)tv.tv_sec)*1000)+(tv.tv_usec/1000);
}

/* Rehash for an amount of time between ms milliseconds and ms+1 milliseconds */
int dictRehashMilliseconds(dict *d, int ms) {
    long long start = timeInMilliseconds();
    int rehashes = 0;

    while(dictRehash(d,100)) {
        rehashes += 100;
        if (timeInMilliseconds()-start > ms) break;
    }
    return rehashes;
}

/* This function performs just a step of rehashing, and only if there are
 * no safe iterators bound to our hash table. When we have iterators in the
 * middle of a rehashing we can't mess with the two hash tables otherwise
 * some element can be missed or duplicated.
 *
 * This function is called by common lookup or update operations in the
 * dictionary so that the hash table automatically migrates from H1 to H2
 * while it is actively used. */
static void _dictRehashStep(dict *d) {
    if (d->iterators == 0) dictRehash(d,1);
}

/* Add an element to the target hash table */
int dictAdd(dict *d, void *key, void *val)
{
    dictEntry *entry = dictAddRaw(d,key,NULL);

    if (!entry) return DICT_ERR;
    dictSetVal(d, entry, val);
    return DICT_OK;
}

/* Low level add or find:
 * This function adds the entry but instead of setting a value returns the
 * dictEntry structure to the user, that will make sure to fill the value
 * field as he wishes.
 *
 * This function is also directly exposed to the user API to be called
 * mainly in order to store non-pointers inside the hash value, example:
 *
 * entry = dictAddRaw(dict,mykey,NULL);
 * if (entry != NULL) dictSetSignedIntegerVal(entry,1000);
 *
 * Return values:
 *
 * If key already exists NULL is returned, and "*existing" is populated
 * with the existing entry if existing is not NULL.
 *
 * If key was added, the hash entry is returned to be manipulated by the caller.
 */
dictEntry *dictAddRaw(dict *d, void *key, dictEntry **existing)
{
    long index;
    dictEntry *entry;
    dictht *ht;

    if (dictIsRehashing(d)) _dictRehashStep(d);

    /* Get the index of the new element, or -1 if
     * the element already exists. */
    if ((index = _dictKeyIndex(d, key, dictHashKey(d,key), existing)) == -1)
        return NULL;

    /* Allocate the memory and store the new entry.
     * Insert the element in top, with the assumption that in a database
     * system it is more likely that recently added entries are accessed
     * more frequently. */
    ht = dictIsRehashing(d) ? &d->ht[1] : &d->ht[0];
    entry = malloc(sizeof(*entry));
    entry->next = ht->table[index];
    ht->table[index] = entry;
    ht->used++;

    /* Set the hash entry fields. */
    dictSetKey(d, entry, key);
    return entry;
}

/* Add or Overwrite:
 * Add an element, discarding the old value if the key already exists.
 * Return 1 if the key was added from scratch, 0 if there was already an
 * element with such key and dictReplace() just performed a value update
 * operation. */
int dictReplace(dict *d, void *key, void *val)
{
    dictEntry *entry, *existing, auxentry;

    /* Try to add the element. If the key
     * does not exists dictAdd will succeed. */
    entry = dictAddRaw(d,key,&existing);
    if (entry) {
        dictSetVal(d, entry, val);
        return 1;
    }

    /* Set the new value and free the old one. Note that it is important
     * to do that in this order, as the value may just be exactly the same
     * as the previous one. In this context, think to reference counting,
     * you want to increment (set), and then decrement (free), and not the
     * reverse. */
    auxentry = *existing;
    dictSetVal(d, existing, val);
    dictFreeVal(d, &auxentry);
    return 0;
}

/* Add or Find:
 * dictAddOrFind() is simply a version of dictAddRaw() that always
 * returns the hash entry of the specified key, even if the key already
 * exists and can't be added (in that case the entry of the already
 * existing key is returned.)
 *
 * See dictAddRaw() for more information. */
dictEntry *dictAddOrFind(dict *d, void *key) {
    dictEntry *entry, *existing;
    entry = dictAddRaw(d,key,&existing);
    return entry ? entry : existing;
}

/* Search and remove an element. This is an helper function for
 * dictDelete() and dictUnlink(), please check the top comment
 * of those functions. */
static dictEntry *dictGenericDelete(dict *d, const void *key, int nofree) {
    uint64_t h, idx;
    dictEntry *he, *prevHe;
    int table;

    if (d->ht[0].used == 0 && d->ht[1].used == 0) return NULL;

    if (dictIsRehashing(d)) _dictRehashStep(d);
    h = dictHashKey(d, key);

    for (table = 0; table <= 1; table++) {
        idx = h & d->ht[table].sizemask;
        he = d->ht[table].table[idx];
        prevHe = NULL;
        while(he) {
            if (key==he->key || dictCompareKeys(d, key, he->key)) {
                /* Unlink the element from the list */
                if (prevHe)
                    prevHe->next = he->next;
                else
                    d->ht[table].table[idx] = he->next;
                if (!nofree) {
                    dictFreeKey(d, he);
                    dictFreeVal(d, he);
                    free(he);
                }
                d->ht[table].used--;
                return he;
            }
            prevHe = he;
            he = he->next;
        }
        if (!dictIsRehashing(d)) break;
    }
    return NULL; /* not found */
}

/* Remove an element, returning DICT_OK on success or DICT_ERR if the
 * element was not found. */
int dictDelete(dict *ht, const void *key) {
    return dictGenericDelete(ht,key,0) ? DICT_OK : DICT_ERR;
}

/* Remove an element from the table, but without actually releasing
 * the key, value and dictionary entry. The dictionary entry is returned
 * if the element was found (and unlinked from the table), and the user
 * should later call `dictFreeUnlinkedEntry()` with it in order to release it.
 * Otherwise if the key is not found, NULL is returned.
 *
 * This function is useful when we want to remove something from the hash
 * table but want to use its value before actually deleting the entry.
 * Without this function the pattern would require two lookups:
 *
 *  entry = dictFind(...);
 *  // Do something with entry
 *  dictDelete(dictionary,entry);
 *
 * Thanks to this function it is possible to avoid this, and use
 * instead:
 *
 * entry = dictUnlink(dictionary,entry);
 * // Do something with entry
 * dictFreeUnlinkedEntry(entry); // <- This does not need to lookup again.
 */
dictEntry *dictUnlink(dict *ht, const void *key) {
    return dictGenericDelete(ht,key,1);
}

/* You need to call this function to really free the entry after a call
 * to dictUnlink(). It's safe to call this function with 'he' = NULL. */
void dictFreeUnlinkedEntry(dict *d, dictEntry *he) {
    if (he == NULL) return;
    dictFreeKey(d, he);
    dictFreeVal(d, he);
    free(he);
}

/* Destroy an entire dictionary */
int _dictClear(dict *d, dictht *ht, void(callback)(void *)) {
    unsigned long i;

    /* Free all the elements */
    for (i = 0; i < ht->size && ht->used > 0; i++) {
        dictEntry *he, *nextHe;

        if (callback && (i & 65535) == 0) callback(d->privdata);

        if ((he = ht->table[i]) == NULL) continue;
        while(he) {
            nextHe = he->next;
            dictFreeKey(d, he);
            dictFreeVal(d, he);
            free(he);
            ht->used--;
            he = nextHe;
        }
    }
    /* Free the table and the allocated cache structure */
    free(ht->table);
    /* Re-initialize the table */
    _dictReset(ht);
    return DICT_OK; /* never fails */
}

/* Clear & Release the hash table */
void dictRelease(dict *d)
{
    _dictClear(d,&d->ht[0],NULL);
    _dictClear(d,&d->ht[1],NULL);
    free(d);
}

dictEntry *dictFind(dict *d, const void *key)
{
    dictEntry *he;
    uint64_t h, idx, table;

    if (d->ht[0].used + d->ht[1].used == 0) return NULL; /* dict is empty */
    if (dictIsRehashing(d)) _dictRehashStep(d);
    h = dictHashKey(d, key);
    for (table = 0; table <= 1; table++) {
        idx = h & d->ht[table].sizemask;
        he = d->ht[table].table[idx];
        while(he) {
            if (key==he->key || dictCompareKeys(d, key, he->key))
                return he;
            he = he->next;
        }
        if (!dictIsRehashing(d)) return NULL;
    }
    return NULL;
}

void *dictFetchValue(dict *d, const void *key) {
    dictEntry *he;

    he = dictFind(d,key);
    return he ? dictGetVal(he) : NULL;
}

/* A fingerprint is a 64 bit number that represents the state of the dictionary
 * at a given time, it's just a few dict properties xored together.
 * When an unsafe iterator is initialized, we get the dict fingerprint, and check
 * the fingerprint again when the iterator is released.
 * If the two fingerprints are different it means that the user of the iterator
 * performed forbidden operations against the dictionary while iterating. */
long long dictFingerprint(dict *d) {
    long long integers[6], hash = 0;
    int j;

    integers[0] = (long) d->ht[0].table;
    integers[1] = d->ht[0].size;
    integers[2] = d->ht[0].used;
    integers[3] = (long) d->ht[1].table;
    integers[4] = d->ht[1].size;
    integers[5] = d->ht[1].used;

    /* We hash N integers by summing every successive integer with the integer
     * hashing of the previous sum. Basically:
     *
     * Result = hash(hash(hash(int1)+int2)+int3) ...
     *
     * This way the same set of integers in a different order will (likely) hash
     * to a different number. */
    for (j = 0; j < 6; j++) {
        hash += integers[j];
        /* For the hashing step we use Tomas Wang's 64 bit integer hash. */
        hash = (~hash) + (hash << 21); // hash = (hash << 21) - hash - 1;
        hash = hash ^ (hash >> 24);
        hash = (hash + (hash << 3)) + (hash << 8); // hash * 265
        hash = hash ^ (hash >> 14);
        hash = (hash + (hash << 2)) + (hash << 4); // hash * 21
        hash = hash ^ (hash >> 28);
        hash = hash + (hash << 31);
    }
    return hash;
}

dictIterator *dictGetIterator(dict *d)
{
    dictIterator *iter = malloc(sizeof(*iter));

    iter->d = d;
    iter->table = 0;
    iter->index = -1;
    iter->safe = 0;
    iter->entry = NULL;
    iter->nextEntry = NULL;
    return iter;
}

dictIterator *dictGetSafeIterator(dict *d) {
    dictIterator *i = dictGetIterator(d);

    i->safe = 1;
    return i;
}

dictEntry *dictNext(dictIterator *iter)
{
    while (1) {
        if (iter->entry == NULL) {
            dictht *ht = &iter->d->ht[iter->table];
            if (iter->index == -1 && iter->table == 0) {
                if (iter->safe)
                    iter->d->iterators++;
                else
                    iter->fingerprint = dictFingerprint(iter->d);
            }
            iter->index++;
            if (iter->index >= (long) ht->size) {
                if (dictIsRehashing(iter->d) && iter->table == 0) {
                    iter->table++;
                    iter->index = 0;
                    ht = &iter->d->ht[1];
                } else {
                    break;
                }
            }
            iter->entry = ht->table[iter->index];
        } else {
            iter->entry = iter->nextEntry;
        }
        if (iter->entry) {
            /* We need to save the 'next' here, the iterator user
             * may delete the entry we are returning. */
            iter->nextEntry = iter->entry->next;
            return iter->entry;
        }
    }
    return NULL;
}

void dictReleaseIterator(dictIterator *iter)
{
    if (!(iter->index == -1 && iter->table == 0)) {
        if (iter->safe)
            iter->d->iterators--;
        else
            assert(iter->fingerprint == dictFingerprint(iter->d));
    }
    free(iter);
}

/* Return a random entry from the hash table. Useful to
 * implement randomized algorithms */
dictEntry *dictGetRandomKey(dict *d)
{
    dictEntry *he, *orighe;
    unsigned long h;
    int listlen, listele;

    if (dictSize(d) == 0) return NULL;
    if (dictIsRehashing(d)) _dictRehashStep(d);
    if (dictIsRehashing(d)) {
        do {
            /* We are sure there are no elements in indexes from 0
             * to rehashidx-1 */
            h = d->rehashidx + (random() % (d->ht[0].size +
                                            d->ht[1].size -
                                            d->rehashidx));
            he = (h >= d->ht[0].size) ? d->ht[1].table[h - d->ht[0].size] :
                                      d->ht[0].table[h];
        } while(he == NULL);
    } else {
        do {
            h = random() & d->ht[0].sizemask;
            he = d->ht[0].table[h];
        } while(he == NULL);
    }

    /* Now we found a non empty bucket, but it is a linked
     * list and we need to get a random element from the list.
     * The only sane way to do so is counting the elements and
     * select a random index. */
    listlen = 0;
    orighe = he;
    while(he) {
        he = he->next;
        listlen++;
    }
    listele = random() % listlen;
    he = orighe;
    while(listele--) he = he->next;
    return he;
}

/* This function samples the dictionary to return a few keys from random
 * locations.
 *
 * It does not guarantee to return all the keys specified in 'count', nor
 * it does guarantee to return non-duplicated elements, however it will make
 * some effort to do both things.
 *
 * Returned pointers to hash table entries are stored into 'des' that
 * points to an array of dictEntry pointers. The array must have room for
 * at least 'count' elements, that is the argument we pass to the function
 * to tell how many random elements we need.
 *
 * The function returns the number of items stored into 'des', that may
 * be less than 'count' if the hash table has less than 'count' elements
 * inside, or if not enough elements were found in a reasonable amount of
 * steps.
 *
 * Note that this function is not suitable when you need a good distribution
 * of the returned items, but only when you need to "sample" a given number
 * of continuous elements to run some kind of algorithm or to produce
 * statistics. However the function is much faster than dictGetRandomKey()
 * at producing N elements. */
unsigned int dictGetSomeKeys(dict *d, dictEntry **des, unsigned int count) {
    unsigned long j; /* internal hash table id, 0 or 1. */
    unsigned long tables; /* 1 or 2 tables? */
    unsigned long stored = 0, maxsizemask;
    unsigned long maxsteps;

    if (dictSize(d) < count) count = dictSize(d);
    maxsteps = count*10;

    /* Try to do a rehashing work proportional to 'count'. */
    for (j = 0; j < count; j++) {
        if (dictIsRehashing(d))
            _dictRehashStep(d);
        else
            break;
    }

    tables = dictIsRehashing(d) ? 2 : 1;
    maxsizemask = d->ht[0].sizemask;
    if (tables > 1 && maxsizemask < d->ht[1].sizemask)
        maxsizemask = d->ht[1].sizemask;

    /* Pick a random point inside the larger table. */
    unsigned long i = random() & maxsizemask;
    unsigned long emptylen = 0; /* Continuous empty entries so far. */
    while(stored < count && maxsteps--) {
        for (j = 0; j < tables; j++) {
            /* Invariant of the dict.c rehashing: up to the indexes already
             * visited in ht[0] during the rehashing, there are no populated
             * buckets, so we can skip ht[0] for indexes between 0 and idx-1. */
            if (tables == 2 && j == 0 && i < (unsigned long) d->rehashidx) {
                /* Moreover, if we are currently out of range in the second
                 * table, there will be no elements in both tables up to
                 * the current rehashing index, so we jump if possible.
                 * (this happens when going from big to small table). */
                if (i >= d->ht[1].size) i = d->rehashidx;
                continue;
            }
            if (i >= d->ht[j].size) continue; /* Out of range for this table. */
            dictEntry *he = d->ht[j].table[i];

            /* Count contiguous empty buckets, and jump to other
             * locations if they reach 'count' (with a minimum of 5). */
            if (he == NULL) {
                emptylen++;
                if (emptylen >= 5 && emptylen > count) {
                    i = random() & maxsizemask;
                    emptylen = 0;
                }
            } else {
                emptylen = 0;
                while (he) {
                    /* Collect all the elements of the buckets found non
                     * empty while iterating. */
                    *des = he;
                    des++;
                    he = he->next;
                    stored++;
                    if (stored == count) return stored;
                }
            }
        }
        i = (i+1) & maxsizemask;
    }
    return stored;
}

/* Function to reverse bits. Algorithm from:
 * http://graphics.stanford.edu/~seander/bithacks.html#ReverseParallel */
static unsigned long rev(unsigned long v) {
    unsigned long s = 8 * sizeof(v); // bit size; must be power of 2
    unsigned long mask = ~0;
    while ((s >>= 1) > 0) {
        mask ^= (mask << s);
        v = ((v >> s) & mask) | ((v << s) & ~mask);
    }
    return v;
}

/* dictScan() is used to iterate over the elements of a dictionary.
 *
 * Iterating works the following way:
 *
 * 1) Initially you call the function using a cursor (v) value of 0.
 * 2) The function performs one step of the iteration, and returns the
 *    new cursor value you must use in the next call.
 * 3) When the returned cursor is 0, the iteration is complete.
 *
 * The function guarantees all elements present in the
 * dictionary get returned between the start and end of the iteration.
 * However it is possible some elements get returned multiple times.
 *
 * For every element returned, the callback argument 'fn' is
 * called with 'privdata' as first argument and the dictionary entry
 * 'de' as second argument.
 *
 * HOW IT WORKS.
 *
 * The iteration algorithm was designed by Pieter Noordhuis.
 * The main idea is to increment a cursor starting from the higher order
 * bits. That is, instead of incrementing the cursor normally, the bits
 * of the cursor are reversed, then the cursor is incremented, and finally
 * the bits are reversed again.
 *
 * This strategy is needed because the hash table may be resized between
 * iteration calls.
 *
 * dict.c hash tables are always power of two in size, and they
 * use chaining, so the position of an element in a given table is given
 * by computing the bitwise AND between Hash(key) and SIZE-1
 * (where SIZE-1 is always the mask that is equivalent to taking the rest
 *  of the division between the Hash of the key and SIZE).
 *
 * For example if the current hash table size is 16, the mask is
 * (in binary) 1111. The position of a key in the hash table will always be
 * the last four bits of the hash output, and so forth.
 *
 * WHAT HAPPENS IF THE TABLE CHANGES IN SIZE?
 *
 * If the hash table grows, elements can go anywhere in one multiple of
 * the old bucket: for example let's say we already iterated with
 * a 4 bit cursor 1100 (the mask is 1111 because hash table size = 16).
 *
 * If the hash table will be resized to 64 elements, then the new mask will
 * be 111111. The new buckets you obtain by substituting in ??1100
 * with either 0 or 1 can be targeted only by keys we already visited
 * when scanning the bucket 1100 in the smaller hash table.
 *
 * By iterating the higher bits first, because of the inverted counter, the
 * cursor does not need to restart if the table size gets bigger. It will
 * continue iterating using cursors without '1100' at the end, and also
 * without any other combination of the final 4 bits already explored.
 *
 * Similarly when the table size shrinks over time, for example going from
 * 16 to 8, if a combination of the lower three bits (the mask for size 8
 * is 111) were already completely explored, it would not be visited again
 * because we are sure we tried, for example, both 0111 and 1111 (all the
 * variations of the higher bit) so we don't need to test it again.
 *
 * WAIT... YOU HAVE *TWO* TABLES DURING REHASHING!
 *
 * Yes, this is true, but we always iterate the smaller table first, then
 * we test all the expansions of the current cursor into the larger
 * table. For example if the current cursor is 101 and we also have a
 * larger table of size 16, we also test (0)101 and (1)101 inside the larger
 * table. This reduces the problem back to having only one table, where
 * the larger one, if it exists, is just an expansion of the smaller one.
 *
 * LIMITATIONS
 *
 * This iterator is completely stateless, and this is a huge advantage,
 * including no additional memory used.
 *
 * The disadvantages resulting from this design are:
 *
 * 1) It is possible we return elements more than once. However this is usually
 *    easy to deal with in the application level.
 * 2) The iterator must return multiple elements per call, as it needs to always
 *    return all the keys chained in a given bucket, and all the expansions, so
 *    we are sure we don't miss keys moving during rehashing.
 * 3) The reverse cursor is somewhat hard to understand at first, but this
 *    comment is supposed to help.
 */
unsigned long dictScan(dict *d,
                       unsigned long v,
                       dictScanFunction *fn,
                       dictScanBucketFunction* bucketfn,
                       void *privdata)
{
    dictht *t0, *t1;
    const dictEntry *de, *next;
    unsigned long m0, m1;

    if (dictSize(d) == 0) return 0;

    if (!dictIsRehashing(d)) {
        t0 = &(d->ht[0]);
        m0 = t0->sizemask;

        /* Emit entries at cursor */
        if (bucketfn) bucketfn(privdata, &t0->table[v & m0]);
        de = t0->table[v & m0];
        while (de) {
            next = de->next;
            fn(privdata, de);
            de = next;
        }

        /* Set unmasked bits so incrementing the reversed cursor
         * operates on the masked bits */
        v |= ~m0;

        /* Increment the reverse cursor */
        v = rev(v);
        v++;
        v = rev(v);

    } else {
        t0 = &d->ht[0];
        t1 = &d->ht[1];

        /* Make sure t0 is the smaller and t1 is the bigger table */
        if (t0->size > t1->size) {
            t0 = &d->ht[1];
            t1 = &d->ht[0];
        }

        m0 = t0->sizemask;
        m1 = t1->sizemask;

        /* Emit entries at cursor */
        if (bucketfn) bucketfn(privdata, &t0->table[v & m0]);
        de = t0->table[v & m0];
        while (de) {
            next = de->next;
            fn(privdata, de);
            de = next;
        }

        /* Iterate over indices in larger table that are the expansion
         * of the index pointed to by the cursor in the smaller table */
        do {
            /* Emit entries at cursor */
            if (bucketfn) bucketfn(privdata, &t1->table[v & m1]);
            de = t1->table[v & m1];
            while (de) {
                next = de->next;
                fn(privdata, de);
                de = next;
            }

            /* Increment the reverse cursor not covered by the smaller mask.*/
            v |= ~m1;
            v = rev(v);
            v++;
            v = rev(v);

            /* Continue while bits covered by mask difference is non-zero */
        } while (v & (m0 ^ m1));
    }

    return v;
}

/* ------------------------- private functions ------------------------------ */

/* Expand the hash table if needed */
static int _dictExpandIfNeeded(dict *d)
{
    /* Incremental rehashing already in progress. Return. */
    if (dictIsRehashing(d)) return DICT_OK;

    /* If the hash table is empty expand it to the initial size. */
    if (d->ht[0].size == 0) return dictExpand(d, DICT_HT_INITIAL_SIZE);

    /* If we reached the 1:1 ratio, and we are allowed to resize the hash
     * table (global setting) or we should avoid it but the ratio between
     * elements/buckets is over the "safe" threshold, we resize doubling
     * the number of buckets. */
    if (d->ht[0].used >= d->ht[0].size &&
        (dict_can_resize ||
         d->ht[0].used/d->ht[0].size > dict_force_resize_ratio))
    {
        return dictExpand(d, d->ht[0].used*2);
    }
    return DICT_OK;
}

/* Our hash table capability is a power of two */
static unsigned long _dictNextPower(unsigned long size)
{
    unsigned long i = DICT_HT_INITIAL_SIZE;

    if (size >= LONG_MAX) return LONG_MAX + 1LU;
    while(1) {
        if (i >= size)
            return i;
        i *= 2;
    }
}

/* Returns the index of a free slot that can be populated with
 * a hash entry for the given 'key'.
 * If the key already exists, -1 is returned
 * and the optional output parameter may be filled.
 *
 * Note that if we are in the process of rehashing the hash table, the
 * index is always returned in the context of the second (new) hash table. */
static long _dictKeyIndex(dict *d, const void *key, uint64_t hash, dictEntry **existing)
{
    unsigned long idx, table;
    dictEntry *he;
    if (existing) *existing = NULL;

    /* Expand the hash table if needed */
    if (_dictExpandIfNeeded(d) == DICT_ERR)
        return -1;
    for (table = 0; table <= 1; table++) {
        idx = hash & d->ht[table].sizemask;
        /* Search if this slot does not already contain the given key */
        he = d->ht[table].table[idx];
        while(he) {
            if (key==he->key || dictCompareKeys(d, key, he->key)) {
                if (existing) *existing = he;
                return -1;
            }
            he = he->next;
        }
        if (!dictIsRehashing(d)) break;
    }
    return idx;
}

void dictEmpty(dict *d, void(callback)(void*)) {
    _dictClear(d,&d->ht[0],callback);
    _dictClear(d,&d->ht[1],callback);
    d->rehashidx = -1;
    d->iterators = 0;
}

void dictEnableResize(void) {
    dict_can_resize = 1;
}

void dictDisableResize(void) {
    dict_can_resize = 0;
}

uint64_t dictGetHash(dict *d, const void *key) {
    return dictHashKey(d, key);
}

/* Finds the dictEntry reference by using pointer and pre-calculated hash.
 * oldkey is a dead pointer and should not be accessed.
 * the hash value should be provided using dictGetHash.
 * no string / key comparison is performed.
 * return value is the reference to the dictEntry if found, or NULL if not found. */
dictEntry **dictFindEntryRefByPtrAndHash(dict *d, const void *oldptr, uint64_t hash) {
    dictEntry *he, **heref;
    unsigned long idx, table;

    if (d->ht[0].used + d->ht[1].used == 0) return NULL; /* dict is empty */
    for (table = 0; table <= 1; table++) {
        idx = hash & d->ht[table].sizemask;
        heref = &d->ht[table].table[idx];
        he = *heref;
        while(he) {
            if (oldptr==he->key)
                return heref;
            heref = &he->next;
            he = *heref;
        }
        if (!dictIsRehashing(d)) return NULL;
    }
    return NULL;
}

/* ------------------------------- Debugging ---------------------------------*/

#define DICT_STATS_VECTLEN 50
size_t _dictGetStatsHt(char *buf, size_t bufsize, dictht *ht, int tableid) {
    unsigned long i, slots = 0, chainlen, maxchainlen = 0;
    unsigned long totchainlen = 0;
    unsigned long clvector[DICT_STATS_VECTLEN];
    size_t l = 0;

    if (ht->used == 0) {
        return snprintf(buf,bufsize,
            "No stats available for empty dictionaries\n");
    }

    /* Compute stats. */
    for (i = 0; i < DICT_STATS_VECTLEN; i++) clvector[i] = 0;
    for (i = 0; i < ht->size; i++) {
        dictEntry *he;

        if (ht->table[i] == NULL) {
            clvector[0]++;
            continue;
        }
        slots++;
        /* For each hash entry on this slot... */
        chainlen = 0;
        he = ht->table[i];
        while(he) {
            chainlen++;
            he = he->next;
        }
        clvector[(chainlen < DICT_STATS_VECTLEN) ? chainlen : (DICT_STATS_VECTLEN-1)]++;
        if (chainlen > maxchainlen) maxchainlen = chainlen;
        totchainlen += chainlen;
    }

    /* Generate human readable stats. */
    l += snprintf(buf+l,bufsize-l,
        "Hash table %d stats (%s):\n"
        " table size: %ld\n"
        " number of elements: %ld\n"
        " different slots: %ld\n"
        " max chain length: %ld\n"
        " avg chain length (counted): %.02f\n"
        " avg chain length (computed): %.02f\n"
        " Chain length distribution:\n",
        tableid, (tableid == 0) ? "main hash table" : "rehashing target",
        ht->size, ht->used, slots, maxchainlen,
        (float)totchainlen/slots, (float)ht->used/slots);

    for (i = 0; i < DICT_STATS_VECTLEN-1; i++) {
        if (clvector[i] == 0) continue;
        if (l >= bufsize) break;
        l += snprintf(buf+l,bufsize-l,
            "   %s%ld: %ld (%.02f%%)\n",
            (i == DICT_STATS_VECTLEN-1)?">= ":"",
            i, clvector[i], ((float)clvector[i]/ht->size)*100);
    }

    /* Unlike snprintf(), teturn the number of characters actually written. */
    if (bufsize) buf[bufsize-1] = '\0';
    return strlen(buf);
}

void dictGetStats(char *buf, size_t bufsize, dict *d) {
    size_t l;
    char *orig_buf = buf;
    size_t orig_bufsize = bufsize;

    l = _dictGetStatsHt(buf,bufsize,&d->ht[0],0);
    buf += l;
    bufsize -= l;
    if (dictIsRehashing(d) && bufsize > 0) {
        _dictGetStatsHt(buf,bufsize,&d->ht[1],1);
    }
    /* Make sure there is a NULL term at the end. */
    if (orig_bufsize) orig_buf[orig_bufsize-1] = '\0';
}

/* ------------------------------- Benchmark ---------------------------------*/

#ifdef DICT_BENCHMARK_MAIN

#include "sds.h"

uint64_t hashCallback(const void *key) {
    return dictGenHashFunction((unsigned char*)key, sdslen((char*)key));
}

int compareCallback(void *privdata, const void *key1, const void *key2) {
    int l1,l2;
    DICT_NOTUSED(privdata);

    l1 = sdslen((sds)key1);
    l2 = sdslen((sds)key2);
    if (l1 != l2) return 0;
    return memcmp(key1, key2, l1) == 0;
}

void freeCallback(void *privdata, void *val) {
    DICT_NOTUSED(privdata);

    sdsfree(val);
}

dictType BenchmarkDictType = {
    hashCallback,
    NULL,
    NULL,
    compareCallback,
    freeCallback,
    NULL
};

#define start_benchmark() start = timeInMilliseconds()
#define end_benchmark(msg) do { \
    elapsed = timeInMilliseconds()-start; \
    printf(msg ": %ld items in %lld ms\n", count, elapsed); \
} while(0);

/* dict-benchmark [count] */
int main(int argc, char **argv) {
    long j;
    long long start, elapsed;
    dict *dict = dictCreate(&BenchmarkDictType,NULL);
    long count = 0;

    if (argc == 2) {
        count = strtol(argv[1],NULL,10);
    } else {
        count = 5000000;
    }

    start_benchmark();
    for (j = 0; j < count; j++) {
        int retval = dictAdd(dict,sdsfromlonglong(j),(void*)j);
        assert(retval == DICT_OK);
    }
    end_benchmark("Inserting");
    assert((long)dictSize(dict) == count);

    /* Wait for rehashing. */
    while (dictIsRehashing(dict)) {
        dictRehashMilliseconds(dict,100);
    }

    start_benchmark();
    for (j = 0; j < count; j++) {
        sds key = sdsfromlonglong(j);
        dictEntry *de = dictFind(dict,key);
        assert(de != NULL);
        sdsfree(key);
    }
    end_benchmark("Linear access of existing elements");

    start_benchmark();
    for (j = 0; j < count; j++) {
        sds key = sdsfromlonglong(j);
        dictEntry *de = dictFind(dict,key);
        assert(de != NULL);
        sdsfree(key);
    }
    end_benchmark("Linear access of existing elements (2nd round)");

    start_benchmark();
    for (j = 0; j < count; j++) {
        sds key = sdsfromlonglong(rand() % count);
        dictEntry *de = dictFind(dict,key);
        assert(de != NULL);
        sdsfree(key);
    }
    end_benchmark("Random access of existing elements");

    start_benchmark();
    for (j = 0; j < count; j++) {
        sds key = sdsfromlonglong(rand() % count);
        key[0] = 'X';
        dictEntry *de = dictFind(dict,key);
        assert(de == NULL);
        sdsfree(key);
    }
    end_benchmark("Accessing missing");

    start_benchmark();
    for (j = 0; j < count; j++) {
        sds key = sdsfromlonglong(j);
        int retval = dictDelete(dict,key);
        assert(retval == DICT_OK);
        key[0] += 17; /* Change first number to letter. */
        retval = dictAdd(dict,key,(void*)j);
        assert(retval == DICT_OK);
    }
    end_benchmark("Removing and adding");
}
#endif