1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
|
#ifndef LIKELIHOOD_H
#define LIKELIHOOD_H
#include "event.h"
#include <stddef.h> /* for size_t */
#define PSUP_REFLECTION_TIME 80.0
/* Minimum number of points in the track integral. */
#define MIN_NPOINTS 100
/* To avoid having to allocate new arrays every time we evaluate the likelihood
* function, we just allocate static arrays with `MAX_POINTS` elements. */
#define MAX_NPOINTS 1000
/* Maximum number of PE to consider if the PMT was hit. */
#define MAX_PE 10000
/* Maximum number of PE to consider if the PMT wasn't hit.
*
* Note: This must be less than MAX_PE. */
#define MAX_PE_NO_HIT 10
/* To speed things up we quit calculating the probability of a hit when the
* ratio between the current probability and the maximum probability is less
* than 10**(-MIN_RATIO). So if MIN_RATIO is -10, that means that we ignore
* probabilities which are 10 million times less likely than the most probable
* value for n. */
#define MIN_RATIO -10
/* Same as above but for the "fast" likelihood calculation. */
#define MIN_RATIO_FAST -2
/* The fraction of reflected light which is detected. */
#define CHARGE_FRACTION_ELECTRON 0.4
#define CHARGE_FRACTION_MUON 0.5
/* Dark rate of the PMTs (Hz).
*
* From pmt_response.dat in SNOMAN. */
#define DARK_RATE 1000.0
/* Single PE transit time spread (ns).
*
* From pmt_response.dat in SNOMAN. */
#define PMT_TTS 1.61
/* Event window (ns) */
#define GTVALID 400.0
#define BETA_MIN 0.8
/* Maximum number of vertices to fit. */
#define MAX_VERTICES 10
typedef struct vertex {
int id;
double T0;
double pos[3];
double dir[3];
double t0;
double z1[10];
double z2[10];
size_t n;
} vertex;
typedef struct particle {
int id;
double mass;
double range;
double *x;
double *T;
size_t n;
double a;
double b;
double shower_photons;
double delta_ray_a;
double delta_ray_b;
double delta_ray_photons;
} particle;
particle *particle_init(int id, double T0, size_t n);
double particle_get_energy(double x, particle *p);
void particle_free(particle *p);
double time_pdf(double t, double mu_noise, double mu_indirect, double *mu_direct, double *mu_shower, size_t n, double *ts, double *ts_shower, double tmean, double sigma, double *ts_sigma);
double time_cdf(double t, double mu_noise, double mu_indirect, double *mu_direct, double *mu_shower, size_t n, double *ts, double *ts_shower, double tmean, double sigma, double *ts_sigma);
double nll_best(event *ev);
double nll(event *ev, vertex *v, size_t n, double dx, double dx_shower, int fast, int charge_only, int hit_only);
#endif
|