1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
|
/* Copyright (c) 2019, Anthony Latorre <tlatorre at uchicago>
*
* This program is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option)
* any later version.
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <https://www.gnu.org/licenses/>.
*/
#include "likelihood.h"
#include <stdlib.h> /* for size_t */
#include "pmt.h"
#include <gsl/gsl_integration.h>
#include "muon.h"
#include "misc.h"
#include <gsl/gsl_sf_gamma.h>
#include "sno.h"
#include "vector.h"
#include "event.h"
#include "optics.h"
#include "sno_charge.h"
#include "pdg.h"
#include "path.h"
#include <stddef.h> /* for size_t */
#include "scattering.h"
#include "solid_angle.h"
#include <gsl/gsl_roots.h>
#include <gsl/gsl_errno.h>
#include "pmt_response.h"
#include "electron.h"
#include "proton.h"
#include "id_particles.h"
#include <gsl/gsl_cdf.h>
#include "find_peaks.h"
particle *particle_init(int id, double T0, size_t n)
{
/* Returns a struct with arrays of the particle position and kinetic
* energy. This struct can then be passed to particle_get_energy() to
* interpolate the particle's kinetic energy at any point along the track.
* For example:
*
* particle *p = particle_init(IDP_MU_MINUS, 1000.0, 100);
* double T = particle_get_energy(x, p);
*
* To compute the kinetic energy as a function of distance we need to solve
* the following integral equation:
*
* T(x) = T0 - \int_0^x dT(T(x))/dx
*
* which we solve by dividing the track up into `n` segments and then
* numerically computing the energy at each step. */
size_t i;
double dEdx, rad;
particle *p = malloc(sizeof(particle));
p->id = id;
p->x = malloc(sizeof(double)*n);
p->T = malloc(sizeof(double)*n);
p->n = n;
p->a = 0.0;
p->b = 0.0;
p->shower_photons = 0.0;
p->delta_ray_a = 0.0;
p->delta_ray_b = 0.0;
p->delta_ray_photons = 0.0;
p->x[0] = 0;
p->T[0] = T0;
switch (id) {
case IDP_E_MINUS:
case IDP_E_PLUS:
p->mass = ELECTRON_MASS;
/* We use the density of light water here since we don't have the
* tables for heavy water for electrons. */
p->range = electron_get_range(T0, WATER_DENSITY);
p->a = electron_get_angular_distribution_alpha(T0);
p->b = electron_get_angular_distribution_beta(T0);
p->delta_ray_photons = 0.0;
/* Now we loop over the points along the track and assume dE/dx is
* constant between points. */
rad = 0.0;
for (i = 1; i < n; i++) {
p->x[i] = p->range*i/(n-1);
dEdx = electron_get_dEdx(p->T[i-1], WATER_DENSITY);
p->T[i] = p->T[i-1] - dEdx*(p->x[i]-p->x[i-1]);
dEdx = electron_get_dEdx_rad(p->T[i-1], WATER_DENSITY);
rad += dEdx*(p->x[i]-p->x[i-1]);
}
/* Make sure that the energy is zero at the last step. This is so that
* when we try to bisect the point along the track where the speed of
* the particle is equal to BETA_MIN, we guarantee that there is a
* point along the track where the speed drops below BETA_MIN.
*
* A possible future improvement would be to dynamically compute the
* range here using the dE/dx table instead of reading in the range. */
p->T[n-1] = 0;
p->shower_photons = rad*ELECTRON_PHOTONS_PER_MEV;
break;
case IDP_MU_MINUS:
case IDP_MU_PLUS:
p->mass = MUON_MASS;
/* We use the density of heavy water here since we only load the heavy
* water table for muons.
*
* FIXME: It would be nice in the future to load both tables and then
* load the correct table based on the media. */
p->range = muon_get_range(T0, HEAVY_WATER_DENSITY);
p->a = muon_get_angular_distribution_alpha(T0);
p->b = muon_get_angular_distribution_beta(T0);
muon_get_delta_ray_distribution_parameters(T0, &p->delta_ray_a, &p->delta_ray_b);
p->delta_ray_photons = muon_get_delta_ray_photons(T0);
/* Now we loop over the points along the track and assume dE/dx is
* constant between points. */
rad = 0.0;
for (i = 1; i < n; i++) {
p->x[i] = p->range*i/(n-1);
dEdx = muon_get_dEdx(p->T[i-1], HEAVY_WATER_DENSITY);
p->T[i] = p->T[i-1] - dEdx*(p->x[i]-p->x[i-1]);
dEdx = muon_get_dEdx_rad(p->T[i-1], WATER_DENSITY);
rad += dEdx*(p->x[i]-p->x[i-1]);
}
/* Make sure that the energy is zero at the last step. This is so that
* when we try to bisect the point along the track where the speed of
* the particle is equal to BETA_MIN, we guarantee that there is a
* point along the track where the speed drops below BETA_MIN.
*
* A possible future improvement would be to dynamically compute the
* range here using the dE/dx table instead of reading in the range. */
p->T[n-1] = 0;
p->shower_photons = rad*MUON_PHOTONS_PER_MEV;
break;
case IDP_PROTON:
p->mass = PROTON_MASS;
/* We use the density of light water here since we don't have the
* tables for heavy water for protons. */
p->range = proton_get_range(T0, WATER_DENSITY);
p->delta_ray_photons = 0.0;
/* Now we loop over the points along the track and assume dE/dx is
* constant between points. */
rad = 0.0;
for (i = 1; i < n; i++) {
p->x[i] = p->range*i/(n-1);
dEdx = proton_get_dEdx(p->T[i-1], WATER_DENSITY);
p->T[i] = p->T[i-1] - dEdx*(p->x[i]-p->x[i-1]);
dEdx = proton_get_dEdx_rad(p->T[i-1], WATER_DENSITY);
rad += dEdx*(p->x[i]-p->x[i-1]);
}
/* Make sure that the energy is zero at the last step. This is so that
* when we try to bisect the point along the track where the speed of
* the particle is equal to BETA_MIN, we guarantee that there is a
* point along the track where the speed drops below BETA_MIN.
*
* A possible future improvement would be to dynamically compute the
* range here using the dE/dx table instead of reading in the range. */
p->T[n-1] = 0;
p->shower_photons = rad*PROTON_PHOTONS_PER_MEV;
break;
default:
fprintf(stderr, "unknown particle id %i\n", id);
exit(1);
}
return p;
}
double particle_get_energy(double x, particle *p)
{
/* Returns the approximate kinetic energy of a particle in water after
* travelling `x` cm with an initial kinetic energy `T`.
*
* Return value is in MeV. */
double T;
T = interp1d(x,p->x,p->T,p->n);
if (T < 0) return 0;
return T;
}
void particle_free(particle *p)
{
free(p->x);
free(p->T);
free(p);
}
static double get_expected_charge_shower(particle *p, double *pos, double *dir, double *pmt_pos, double *pmt_normal, double r, double *reflected, double n_d2o, double n_h2o, double l_d2o, double l_h2o, double *q_delta_ray, double *q_indirect_delta_ray)
{
double pmt_dir[3], cos_theta, omega, f, f_reflec, cos_theta_pmt, absorption_length_h2o, absorption_length_d2o, absorption_length_acrylic, l_acrylic, theta_pmt, charge, scattering_length_h2o, scattering_length_d2o, scatter, constant;
SUB(pmt_dir,pmt_pos,pos);
normalize(pmt_dir);
cos_theta_pmt = DOT(pmt_dir,pmt_normal);
charge = 0.0;
*q_delta_ray = 0.0;
*q_indirect_delta_ray = 0.0;
*reflected = 0.0;
if (cos_theta_pmt > 0) return 0.0;
/* Calculate the cosine of the angle between the track direction and the
* vector to the PMT. */
cos_theta = DOT(dir,pmt_dir);
omega = get_solid_angle_fast(pos,pmt_pos,pmt_normal,r);
theta_pmt = acos(-cos_theta_pmt);
f_reflec = get_weighted_pmt_reflectivity(theta_pmt);
f = get_weighted_pmt_response(theta_pmt);
absorption_length_d2o = get_weighted_absorption_length_snoman_d2o();
absorption_length_h2o = get_weighted_absorption_length_snoman_h2o();
absorption_length_acrylic = get_weighted_absorption_length_snoman_acrylic();
scattering_length_d2o = get_weighted_rayleigh_scattering_length_snoman_d2o();
scattering_length_h2o = get_weighted_rayleigh_scattering_length_snoman_h2o();
l_acrylic = AV_RADIUS_OUTER - AV_RADIUS_INNER;
constant = exp(-l_d2o/absorption_length_d2o-l_h2o/absorption_length_h2o-l_acrylic/absorption_length_acrylic)*get_weighted_quantum_efficiency()*omega/(2*M_PI);
/* Note: We assume here that the peak of the angular distribution is at the
* Cerenkov angle for a particle with beta = 1. This seems to be an OK
* assumption for high energy showers, but is not exactly correct for
* showers from lower energy electrons or for delta rays from lower energy
* muons. It seems good enough, but in the future it would be nice to
* parameterize this. */
if (p->shower_photons > 0)
charge = constant*p->shower_photons*electron_get_angular_pdf(cos_theta,p->a,p->b,1/n_d2o);
if (p->delta_ray_photons > 0)
*q_delta_ray = constant*p->delta_ray_photons*electron_get_angular_pdf_delta_ray(cos_theta,p->delta_ray_a,p->delta_ray_b,1/n_d2o);
scatter = exp(-l_d2o/scattering_length_d2o-l_h2o/scattering_length_h2o);
*reflected = (f_reflec + 1.0 - scatter)*charge;
*q_indirect_delta_ray = (f_reflec + 1.0 - scatter)*(*q_delta_ray);
*q_delta_ray *= f*scatter;
return f*charge*scatter;
}
static double get_expected_charge(double x, double beta, double theta0, double *pos, double *dir, double *pmt_pos, double *pmt_normal, double r, double *reflected, double n_d2o, double n_h2o, double l_d2o, double l_h2o)
{
double pmt_dir[3], cos_theta, n, omega, z, R, f, f_reflec, cos_theta_pmt, absorption_length_h2o, absorption_length_d2o, absorption_length_acrylic, l_acrylic, theta_pmt, charge, scattering_length_h2o, scattering_length_d2o, scatter;
z = 1.0;
R = NORM(pos);
n = (R <= AV_RADIUS) ? n_d2o : n_h2o;
*reflected = 0.0;
if (beta < 1/n) return 0.0;
SUB(pmt_dir,pmt_pos,pos);
normalize(pmt_dir);
/* Calculate the cosine of the angle between the track direction and the
* vector to the PMT. */
cos_theta = DOT(dir,pmt_dir);
*reflected = 0.0;
if (fabs(cos_theta-1.0/(n_d2o*beta))/theta0 > 5) return 0.0;
cos_theta_pmt = DOT(pmt_dir,pmt_normal);
if (cos_theta_pmt > 0) return 0.0;
omega = get_solid_angle_fast(pos,pmt_pos,pmt_normal,r);
theta_pmt = acos(-cos_theta_pmt);
f_reflec = get_weighted_pmt_reflectivity(theta_pmt);
f = get_weighted_pmt_response(theta_pmt);
absorption_length_d2o = get_weighted_absorption_length_snoman_d2o();
absorption_length_h2o = get_weighted_absorption_length_snoman_h2o();
absorption_length_acrylic = get_weighted_absorption_length_snoman_acrylic();
scattering_length_d2o = get_weighted_rayleigh_scattering_length_snoman_d2o();
scattering_length_h2o = get_weighted_rayleigh_scattering_length_snoman_h2o();
l_acrylic = AV_RADIUS_OUTER - AV_RADIUS_INNER;
charge = exp(-l_d2o/absorption_length_d2o-l_h2o/absorption_length_h2o-l_acrylic/absorption_length_acrylic)*omega*FINE_STRUCTURE_CONSTANT*z*z*(1-(1/(beta*beta*n*n)))*get_probability(beta, cos_theta, theta0);
scatter = exp(-l_d2o/scattering_length_d2o-l_h2o/scattering_length_h2o);
*reflected = (f_reflec + 1.0 - scatter)*charge;
return f*charge*scatter;
}
double time_cdf(double t, double mu_noise, double mu_indirect, double *mu_direct, double *mu_shower, size_t n, double *ts, double *ts_shower, double tmean, double sigma, double *ts_sigma)
{
/* Returns the CDF for the time distribution of photons at time `t`. */
size_t i;
double p, mu_total;
p = mu_noise*t/GTVALID;
if (t < tmean)
;
else if (t < tmean + PSUP_REFLECTION_TIME)
p += mu_indirect*(t-tmean)/PSUP_REFLECTION_TIME;
else
p += mu_indirect;
mu_total = mu_noise + mu_indirect;
for (i = 0; i < n; i++) {
if (mu_direct[i] == 0.0) continue;
p += mu_direct[i]*norm_cdf(t,ts[i],sigma);
mu_total += mu_direct[i];
}
for (i = 0; i < n; i++) {
if (mu_shower[i] == 0.0) continue;
p += mu_shower[i]*norm_cdf(t,ts_shower[i],ts_sigma[i]);
mu_total += mu_shower[i];
}
return p/mu_total;
}
double time_pdf(double t, double mu_noise, double mu_indirect, double *mu_direct, double *mu_shower, size_t n, double *ts, double *ts_shower, double tmean, double sigma, double *ts_sigma)
{
/* Returns the probability that a photon is detected at time `t`.
*
* The probability distribution is the sum of three different components:
* dark noise, indirect light, and direct light. The dark noise is assumed
* to be constant in time. The direct light is assumed to be a delta
* function around the times `ts`, where each element of `ts` comes from a
* different particle. This assumption is probably valid for particles
* like muons which don't scatter much, and the hope is that it is *good
* enough* for electrons too. The probability distribution for indirect
* light is assumed to be a step function past some time `tmean`.
*
* The probability returned is calculated by taking the sum of these three
* components and convolving it with a gaussian with standard deviation
* `sigma` which should typically be the PMT transit time spread. */
size_t i;
double p, mu_total;
p = mu_noise/GTVALID + mu_indirect*(erf((t-tmean)/(sqrt(2)*sigma))-erf((t-tmean-PSUP_REFLECTION_TIME)/(sqrt(2)*sigma)))/(2*PSUP_REFLECTION_TIME);
mu_total = mu_noise + mu_indirect;
for (i = 0; i < n; i++) {
if (mu_direct[i] == 0.0) continue;
p += mu_direct[i]*norm(t,ts[i],sigma);
mu_total += mu_direct[i];
}
for (i = 0; i < n; i++) {
if (mu_shower[i] == 0.0) continue;
p += mu_shower[i]*norm(t,ts_shower[i],ts_sigma[i]);
mu_total += mu_shower[i];
}
return p/mu_total;
}
double log_pt(double t, size_t n, double mu_noise, double mu_indirect, double *mu_direct, double *mu_shower, size_t n2, double *ts, double *ts_shower, double tmean, double sigma, double *ts_sigma)
{
/* Returns the first order statistic for observing a PMT hit at time `t`
* given `n` hits.
*
* The first order statistic is computed from the probability distribution
* above. It's not obvious whether one should take the first order
* statistic before or after convolving with the PMT transit time spread.
* Since at least some of the transit time spread in SNO comes from the
* different transit times across the face of the PMT, it seems better to
* convolve first which is what we do here. In addition, the problem is not
* analytically tractable if you do things the other way around. */
if (n == 1)
return ln(n) + log(time_pdf(t,mu_noise,mu_indirect,mu_direct,mu_shower,n2,ts,ts_shower,tmean,sigma,ts_sigma));
else
return ln(n) + (n-1)*log1p(-time_cdf(t,mu_noise,mu_indirect,mu_direct,mu_shower,n2,ts,ts_shower,tmean,sigma,ts_sigma)) + log(time_pdf(t,mu_noise,mu_indirect,mu_direct,mu_shower,n2,ts,ts_shower,tmean,sigma,ts_sigma));
}
static void integrate_path_shower(particle *p, double *x, double *pdf, double T0, double *pos0, double *dir0, int pmt, size_t n, double *mu_direct, double *mu_indirect, double *time, double *sigma)
{
size_t i;
static double qs[MAX_NPOINTS];
static double q_indirects[MAX_NPOINTS];
static double ts[MAX_NPOINTS];
static double ts2[MAX_NPOINTS];
double pos[3], n_d2o, n_h2o, wavelength0, t, l_d2o, l_h2o, q_delta_ray, q_indirect_delta_ray, dx, tmp;
if (n > MAX_NPOINTS) {
fprintf(stderr, "number of points is greater than MAX_NPOINTS!\n");
exit(1);
}
/* FIXME: I just calculate delta assuming 400 nm light. */
wavelength0 = 400.0;
n_d2o = get_index_snoman_d2o(wavelength0);
n_h2o = get_index_snoman_h2o(wavelength0);
for (i = 0; i < n; i++) {
pos[0] = pos0[0] + x[i]*dir0[0];
pos[1] = pos0[1] + x[i]*dir0[1];
pos[2] = pos0[2] + x[i]*dir0[2];
get_path_length(pos,pmts[pmt].pos,AV_RADIUS,&l_d2o,&l_h2o);
t = x[i]/SPEED_OF_LIGHT + l_d2o*n_d2o/SPEED_OF_LIGHT + l_h2o*n_h2o/SPEED_OF_LIGHT;
qs[i] = get_expected_charge_shower(p, pos, dir0, pmts[pmt].pos, pmts[pmt].normal, PMT_RADIUS, q_indirects+i, n_d2o, n_h2o, l_d2o, l_h2o, &q_delta_ray, &q_indirect_delta_ray);
qs[i] = qs[i]*pdf[i] + q_delta_ray/p->range;
q_indirects[i] = q_indirects[i]*pdf[i] + q_indirect_delta_ray/p->range;
ts[i] = t*qs[i];
ts2[i] = t*t*qs[i];
}
dx = x[1]-x[0];
*mu_direct = trapz(qs,dx,n);
*mu_indirect = trapz(q_indirects,dx,n);
if (*mu_direct == 0.0) {
*time = 0.0;
*sigma = PMT_TTS;
} else {
*time = trapz(ts,dx,n)/(*mu_direct);
/* Variance in the time = E(t^2) - E(t)^2. */
tmp = trapz(ts2,dx,n)/(*mu_direct) - (*time)*(*time);
if (tmp >= 0) {
*sigma = sqrt(tmp + PMT_TTS*PMT_TTS);
} else {
/* This should never happen but does occasionally due to floating
* point rounding error. */
*sigma = PMT_TTS;
}
}
}
static void integrate_path(path *p, int pmt, double *mu_direct, double *mu_indirect, double *time)
{
size_t i;
static double qs[MAX_NPOINTS];
static double q_indirects[MAX_NPOINTS];
static double ts[MAX_NPOINTS];
double dir[3], pos[3], n_d2o, n_h2o, wavelength0, t, theta0, beta, l_d2o, l_h2o, x;
if (p->len > MAX_NPOINTS) {
fprintf(stderr, "number of points is greater than MAX_NPOINTS!\n");
exit(1);
}
/* FIXME: I just calculate delta assuming 400 nm light. */
wavelength0 = 400.0;
n_d2o = get_index_snoman_d2o(wavelength0);
n_h2o = get_index_snoman_h2o(wavelength0);
for (i = 0; i < p->len; i++) {
x = p->s[i];
pos[0] = p->x[i];
pos[1] = p->y[i];
pos[2] = p->z[i];
dir[0] = p->dx[i];
dir[1] = p->dy[i];
dir[2] = p->dz[i];
beta = p->beta[i];
t = p->t[i];
if (p->n > 0) {
theta0 = p->theta0;
} else {
theta0 = fmax(MIN_THETA0,p->theta0*sqrt(x));
theta0 = fmin(MAX_THETA0,theta0);
}
get_path_length(pos,pmts[pmt].pos,AV_RADIUS,&l_d2o,&l_h2o);
t += l_d2o*n_d2o/SPEED_OF_LIGHT + l_h2o*n_h2o/SPEED_OF_LIGHT;
qs[i] = get_expected_charge(x, beta, theta0, pos, dir, pmts[pmt].pos, pmts[pmt].normal, PMT_RADIUS, q_indirects+i, n_d2o, n_h2o, l_d2o, l_h2o);
ts[i] = t*qs[i];
}
double dx = p->s[1]-p->s[0];
*mu_direct = trapz(qs,dx,p->len);
*mu_indirect = trapz(q_indirects,dx,p->len);
*time = trapz(ts,dx,p->len);
}
static double get_total_charge_approx(double beta0, double *pos, double *dir, particle *p, int i, double smax, double theta0, double *t, double *mu_reflected, double n_d2o, double n_h2o, double cos_theta_cerenkov, double sin_theta_cerenkov)
{
/* Returns the approximate expected number of photons seen by PMT `i` using
* an analytic formula.
*
* To come up with an analytic formula for the expected number of photons,
* it was necessary to make the following approximations:
*
* - the index of refraction is constant
* - the particle track is a straight line
* - the integral along the particle track is dominated by the gaussian
* term describing the angular distribution of the light
*
* With these approximations and a few other ones (like using a Taylor
* expansion for the distance to the PMT), it is possible to pull
* everything out of the track integral and assume it's equal to it's value
* along the track where the exponent of the gaussian dominates.
*
* The point along the track where the exponent dominates is calculated by
* finding the point along the track where the angle between the track
* direction and the PMT is equal to the Cerenkov angle. If this point is
* before the start of the track, we use the start of the track and if it's
* past the end of `smax` we use `smax`.
*
* Since the integral over the track also contains a term like
* (1-1/(beta**2*n**2)) which is not constant near the end of the track, it
* is necessary to define `smax` as the point along the track where the
* particle velocity drops below some threshold.
*
* `smax` is currently calculated as the point where the particle velocity
* drops to 0.8 times the speed of light. */
double pmt_dir[3], tmp[3], R, cos_theta, x, z, s, a, b, beta, E, mom, T, omega, sin_theta, f, cos_theta_pmt, theta_pmt, absorption_length_h2o, absorption_length_d2o, absorption_length_acrylic, l_h2o, l_d2o, l_acrylic, f_reflected, charge, prob, frac;
/* First, we find the point along the track where the PMT is at the
* Cerenkov angle. */
SUB(pmt_dir,pmts[i].pos,pos);
/* Compute the distance to the PMT. */
R = NORM(pmt_dir);
normalize(pmt_dir);
/* Calculate the cosine of the angle between the track direction and the
* vector to the PMT at the start of the track. */
cos_theta = DOT(dir,pmt_dir);
sin_theta = sqrt(1-pow(cos_theta,2));
/* Now, we compute the distance along the track where the PMT is at the
* Cerenkov angle.
*
* Note: This formula comes from using the "Law of sines" where the three
* vertices of the triangle are the starting position of the track, the
* point along the track that we want to find, and the PMT position. */
if (sin_theta_cerenkov != 0)
s = R*(sin_theta_cerenkov*cos_theta - cos_theta_cerenkov*sin_theta)/sin_theta_cerenkov;
else
s = R*cos_theta;
/* Make sure that the point is somewhere along the track between 0 and
* `smax`. */
if (s < 0) s = 0.0;
else if (s > smax) s = smax;
/* Compute the vector from the point `s` along the track to the PMT. */
tmp[0] = pmts[i].pos[0] - (pos[0] + s*dir[0]);
tmp[1] = pmts[i].pos[1] - (pos[1] + s*dir[1]);
tmp[2] = pmts[i].pos[2] - (pos[2] + s*dir[2]);
/* To do the integral analytically, we expand the distance to the PMT along
* the track in a Taylor series around `s0`, i.e.
*
* r(s) = a + b*(s-s0)
*
* Here, we calculate `a` which is the distance to the PMT at the point
* `s`. */
a = NORM(tmp);
/* `z` is the distance to the PMT projected onto the track direction. */
z = R*cos_theta;
/* `x` is the perpendicular distance from the PMT position to the track. */
x = R*sqrt(1-pow(cos_theta,2));
/* `b` is the second coefficient in the Taylor expansion. */
b = (s-z)/a;
/* Compute the kinetic energy at the point `s` along the track. */
T = particle_get_energy(s,p);
/* Calculate the particle velocity at the point `s`. */
E = T + p->mass;
mom = sqrt(E*E - p->mass*p->mass);
beta = mom/E;
*t = 0.0;
*mu_reflected = 0.0;
if (beta < 1/n_d2o) return 0.0;
/* `prob` is the number of photons emitted per cm by the particle at a
* distance `s` along the track. */
prob = get_probability2(beta);
/* Compute the position of the particle at a distance `s` along the track. */
tmp[0] = pos[0] + s*dir[0];
tmp[1] = pos[1] + s*dir[1];
tmp[2] = pos[2] + s*dir[2];
SUB(pmt_dir,pmts[i].pos,tmp);
normalize(pmt_dir);
cos_theta_pmt = DOT(pmt_dir,pmts[i].normal);
*t = 0.0;
*mu_reflected = 0.0;
if (cos_theta_pmt > 0) return 0.0;
/* Calculate the sine of the angle between the track direction and the PMT
* at the position `s` along the track. */
cos_theta = DOT(dir,pmt_dir);
sin_theta = sqrt(1-pow(cos_theta,2));
/* Get the solid angle of the PMT at the position `s` along the track. */
omega = get_solid_angle_fast(tmp,pmts[i].pos,pmts[i].normal,PMT_RADIUS);
theta0 = fmax(theta0*sqrt(s),MIN_THETA0);
frac = sqrt(2)*n_d2o*x*beta0*theta0;
theta_pmt = acos(-cos_theta_pmt);
f = get_weighted_pmt_response(theta_pmt);
f_reflected = get_weighted_pmt_reflectivity(theta_pmt);
absorption_length_d2o = get_weighted_absorption_length_snoman_d2o();
absorption_length_h2o = get_weighted_absorption_length_snoman_h2o();
absorption_length_acrylic = get_weighted_absorption_length_snoman_acrylic();
get_path_length(tmp,pmts[i].pos,AV_RADIUS,&l_d2o,&l_h2o);
l_acrylic = AV_RADIUS_OUTER - AV_RADIUS_INNER;
/* Assume the particle is travelling at the speed of light. */
*t = s/SPEED_OF_LIGHT + l_d2o*n_d2o/SPEED_OF_LIGHT + l_h2o*n_h2o/SPEED_OF_LIGHT;
double abs_prob = exp(-l_d2o/absorption_length_d2o-l_h2o/absorption_length_h2o-l_acrylic/absorption_length_acrylic);
charge = abs_prob*n_d2o*x*beta0*prob*(1/sin_theta)*omega*(erf((a+b*(smax-s)+n_d2o*(smax-z)*beta0)/frac) + erf((-a+b*s+n_d2o*z*beta0)/frac))/(b+n_d2o*beta0)/(4*M_PI);
/* Add expected number of photons from electromagnetic shower. */
if (p->shower_photons > 0)
charge += abs_prob*get_weighted_quantum_efficiency()*p->shower_photons*electron_get_angular_pdf(cos_theta,p->a,p->b,1.0/n_d2o)*omega/(2*M_PI);
if (p->delta_ray_photons > 0)
charge += abs_prob*get_weighted_quantum_efficiency()*p->delta_ray_photons*electron_get_angular_pdf_delta_ray(cos_theta,p->delta_ray_a,p->delta_ray_b,1.0/n_d2o)*omega/(2*M_PI);
*mu_reflected = f_reflected*charge;
return f*charge;
}
typedef struct betaRootParams {
particle *p;
double beta_min;
} betaRootParams;
static double beta_root(double x, void *params)
{
/* Function used to find at what point along a track a particle crosses
* some threshold in beta. */
double T, E, mom, beta;
betaRootParams *pars;
pars = (betaRootParams *) params;
T = particle_get_energy(x, pars->p);
/* Calculate total energy */
E = T + pars->p->mass;
mom = sqrt(E*E - pars->p->mass*pars->p->mass);
beta = mom/E;
return beta - pars->beta_min;
}
static int get_smax(particle *p, double beta_min, double range, double *smax)
{
/* Find the point along the track at which the particle's velocity drops to
* `beta_min`. */
int status;
betaRootParams pars;
gsl_root_fsolver *s;
gsl_function F;
int iter = 0, max_iter = 100;
double r, x_lo, x_hi;
s = gsl_root_fsolver_alloc(gsl_root_fsolver_brent);
pars.p = p;
pars.beta_min = beta_min;
F.function = &beta_root;
F.params = &pars;
gsl_root_fsolver_set(s, &F, 0.0, range);
do {
iter++;
status = gsl_root_fsolver_iterate(s);
r = gsl_root_fsolver_root(s);
x_lo = gsl_root_fsolver_x_lower(s);
x_hi = gsl_root_fsolver_x_upper(s);
/* Find the root to within 1 mm. */
status = gsl_root_test_interval(x_lo, x_hi, 1e-1, 0);
if (status == GSL_SUCCESS) break;
} while (status == GSL_CONTINUE && iter < max_iter);
gsl_root_fsolver_free(s);
*smax = r;
return status;
}
static double guess_time(double *pos, double *dir, double *pmt_pos, double smax, double n_d2o, double n_h2o, double cos_theta_cerenkov, double sin_theta_cerenkov)
{
/* Returns an approximate time at which a PMT is most likely to get hit
* from Cerenkov light.
*
* To do this, we try to compute the distance along the track where the PMT
* is at the Cerenkov angle. */
double pmt_dir[3], tmp[3];
double R, cos_theta, sin_theta, s, l_d2o, l_h2o;
/* First, we find the point along the track where the PMT is at the
* Cerenkov angle. */
SUB(pmt_dir,pmt_pos,pos);
/* Compute the distance to the PMT. */
R = NORM(pmt_dir);
normalize(pmt_dir);
/* Calculate the cosine of the angle between the track direction and the
* vector to the PMT at the start of the track. */
cos_theta = DOT(dir,pmt_dir);
sin_theta = sqrt(1-pow(cos_theta,2));
/* Now, we compute the distance along the track where the PMT is at the
* Cerenkov angle.
*
* Note: This formula comes from using the "Law of sines" where the three
* vertices of the triangle are the starting position of the track, the
* point along the track that we want to find, and the PMT position. */
if (sin_theta_cerenkov != 0)
s = R*(sin_theta_cerenkov*cos_theta - cos_theta_cerenkov*sin_theta)/sin_theta_cerenkov;
else
s = R*cos_theta;
/* Make sure that the point is somewhere along the track between 0 and
* `smax`. */
if (s < 0) s = 0.0;
else if (s > smax) s = smax;
/* Compute the position of the particle at a distance `s` along the track. */
tmp[0] = pos[0] + s*dir[0];
tmp[1] = pos[1] + s*dir[1];
tmp[2] = pos[2] + s*dir[2];
SUB(pmt_dir,pmt_pos,tmp);
get_path_length(tmp,pmt_pos,AV_RADIUS,&l_d2o,&l_h2o);
/* Assume the particle is travelling at the speed of light. */
return s/SPEED_OF_LIGHT + l_d2o*n_d2o/SPEED_OF_LIGHT + l_h2o*n_h2o/SPEED_OF_LIGHT;
}
static double getKineticEnergy(double x, void *p)
{
return particle_get_energy(x, (particle *) p);
}
double nll_best(event *ev)
{
/* Returns the negative log likelihood of the "best hypothesis" for the event `ev`.
*
* By "best hypothesis" I mean we restrict the model to assign a single
* mean number of PE for each PMT in the event assuming that the number of
* PE hitting each PMT is poisson distributed. In addition, the model picks
* a single time for the light to arrive with the PDF being given by a sum
* of dark noise and a Gaussian around this time with a width equal to the
* single PE transit time spread.
*
* This calculation is intended to be used as a goodness of fit test for
* the fitter by computing a likelihood ratio between the best fit
* hypothesis and this ideal case. See Chapter 9 in Jayne's "Probability
* Theory: The Logic of Science" for more details. */
size_t i, j, nhit, maxj;
static double logp[MAX_PE], nll[MAX_PMTS], mu[MAX_PMTS], ts[MAX_PMTS], ts_shower, ts_sigma, mu_shower;
double log_mu, max_logp, mu_noise, mu_indirect_total, min_ratio;
mu_noise = DARK_RATE*GTVALID*1e-9;
/* Compute the "best" number of expected PE for each PMT. */
for (i = 0; i < MAX_PMTS; i++) {
if (ev->pmt_hits[i].flags || pmts[i].pmt_type != PMT_NORMAL) continue;
if (!ev->pmt_hits[i].hit) {
/* If the PMT wasn't hit we assume the expected number of PE just
* come from noise hits. */
mu[i] = mu_noise;
continue;
}
/* Technically we should be computing:
*
* mu[i] = max(p(q|mu))
*
* where by max I mean we find the expected number of PE which
* maximizes p(q|mu). However, I don't know of any easy analytical
* solution to this. So instead we just compute the number of PE which
* maximizes p(q|n). */
for (j = 1; j < MAX_PE; j++) {
logp[j] = get_log_pq(ev->pmt_hits[i].qhs,j);
if (j == 1 || logp[j] > max_logp) {
maxj = j;
max_logp = logp[j];
}
}
mu[i] = maxj;
ts[i] = ev->pmt_hits[i].t;
}
mu_shower = 0;
ts_shower = 0;
ts_sigma = PMT_TTS;
mu_indirect_total = 0.0;
min_ratio = MIN_RATIO;
/* Now, we actually compute the negative log likelihood for the best
* hypothesis.
*
* Currently this calculation is identical to the one in nll() so it should
* probably be made into a function. */
nhit = 0;
for (i = 0; i < MAX_PMTS; i++) {
if (ev->pmt_hits[i].flags || pmts[i].pmt_type != PMT_NORMAL) continue;
log_mu = log(mu[i]);
if (ev->pmt_hits[i].hit) {
for (j = 1; j < MAX_PE; j++) {
logp[j] = get_log_pq(ev->pmt_hits[i].qhs,j) - mu[i] + j*log_mu - lnfact(j) + log_pt(ev->pmt_hits[i].t, j, mu_noise, mu_indirect_total, &mu[i], &mu_shower, 1, &ts[i], &ts_shower, ts[i], PMT_TTS, &ts_sigma);
if (j == 1 || logp[j] > max_logp) max_logp = logp[j];
if (logp[j] - max_logp < min_ratio*ln(10)) {
j++;
break;
}
}
nll[nhit++] = -logsumexp(logp+1, j-1);
} else {
logp[0] = -mu[i];
for (j = 1; j < MAX_PE_NO_HIT; j++) {
logp[j] = get_log_pmiss(j) - mu[i] + j*log_mu - lnfact(j);
}
nll[nhit++] = -logsumexp(logp, MAX_PE_NO_HIT);
}
}
return kahan_sum(nll,nhit);
}
double nll(event *ev, vertex *v, size_t n, double dx, double dx_shower, int fast, int charge_only, int hit_only)
{
/* Returns the negative log likelihood for event `ev` given a particle with
* id `id`, initial kinetic energy `T0`, position `pos`, direction `dir` and
* initial time `t0`.
*
* `dx` is the distance the track is sampled at to compute the likelihood.
*
* If `fast` is nonzero, returns an approximate faster version of the likelihood.
*
* `z1` and `z2` should be arrays of length `n` and represent coefficients
* in the Karhunen Loeve expansion of the track path. These are only used
* when `fast` is zero. */
size_t i, j, nhit;
static double logp[MAX_PE], nll[MAX_PMTS];
double range, theta0, E0, p0, beta0, smax, log_mu, max_logp;
particle *p;
double wavelength0, n_d2o, n_h2o, cos_theta_cerenkov, sin_theta_cerenkov;
double logp_path;
double mu_reflected;
path *path;
static double mu_direct[MAX_PMTS][MAX_VERTICES];
static double mu_shower[MAX_PMTS][MAX_VERTICES];
static double ts[MAX_PMTS][MAX_VERTICES];
static double ts_shower[MAX_PMTS][MAX_VERTICES];
static double ts_sigma[MAX_PMTS][MAX_VERTICES];
static double mu[MAX_PMTS];
double mu_noise, mu_indirect[MAX_VERTICES], mu_indirect_total;
double *x, *pdf;
double result;
double min_ratio;
double pos_a, pos_b;
double xlo, xhi;
size_t npoints, npoints_shower;
double log_pt_fast;
if (n > MAX_VERTICES) {
fprintf(stderr, "maximum number of vertices is %i\n", MAX_VERTICES);
exit(1);
}
/* Initialize static arrays. */
for (i = 0; i < MAX_PMTS; i++) {
mu[i] = 0.0;
for (j = 0; j < n; j++) {
mu_direct[i][j] = 0.0;
mu_shower[i][j] = 0.0;
ts[i][j] = 0.0;
ts_shower[i][j] = 0.0;
ts_sigma[i][j] = PMT_TTS;
}
}
for (j = 0; j < n; j++) {
if (fast)
p = particle_init(v[j].id, v[j].T0, 1000);
else
p = particle_init(v[j].id, v[j].T0, 10000);
range = p->range;
/* Number of points to sample along the particle track. */
npoints = (size_t) (range/dx + 0.5);
if (npoints < MIN_NPOINTS) npoints = MIN_NPOINTS;
if (npoints > MAX_NPOINTS) npoints = MAX_NPOINTS;
/* Calculate total energy */
E0 = v[j].T0 + p->mass;
p0 = sqrt(E0*E0 - p->mass*p->mass);
beta0 = p0/E0;
/* FIXME: is this formula valid for muons? */
theta0 = get_scattering_rms(range/2,p0,beta0,1.0)/sqrt(range/2);
if (!fast) {
path = path_init(v[j].pos, v[j].dir, v[j].T0, range, npoints, theta0, getKineticEnergy, p, v[j].z1, v[j].z2, v[j].n, p->mass);
switch (v[j].id) {
case IDP_E_MINUS:
case IDP_E_PLUS:
electron_get_position_distribution_parameters(v[j].T0, &pos_a, &pos_b);
break;
case IDP_MU_MINUS:
case IDP_MU_PLUS:
muon_get_position_distribution_parameters(v[j].T0, &pos_a, &pos_b);
break;
default:
fprintf(stderr, "unknown particle id %i\n", v[j].id);
exit(1);
}
/* Lower and upper limits to integrate for the electromagnetic
* shower. */
xlo = 0.0;
xhi = gsl_cdf_gamma_Pinv(0.99,pos_a,pos_b);
/* Number of points to sample along the longitudinal direction for
* the electromagnetic shower. */
npoints_shower = (size_t) ((xhi-xlo)/dx_shower + 0.5);
if (npoints_shower < MIN_NPOINTS) npoints_shower = MIN_NPOINTS;
if (npoints_shower > MAX_NPOINTS) npoints_shower = MAX_NPOINTS;
x = malloc(sizeof(double)*npoints_shower);
pdf = malloc(sizeof(double)*npoints_shower);
for (i = 0; i < npoints_shower; i++) {
x[i] = xlo + i*(xhi-xlo)/(npoints_shower-1);
pdf[i] = gamma_pdf(x[i],pos_a,pos_b);
}
/* Make sure the PDF is normalized. */
double norm = trapz(pdf,x[1]-x[0],npoints_shower);
for (i = 0; i < npoints_shower; i++) {
pdf[i] /= norm;
}
}
if (beta0 > BETA_MIN)
get_smax(p, BETA_MIN, range, &smax);
else
smax = 0.0;
/* Compute the Cerenkov angle at the start of the track.
*
* These are computed at the beginning of this function and then passed to
* the different functions to avoid recomputing them on the fly. */
wavelength0 = 400.0;
n_d2o = get_index_snoman_d2o(wavelength0);
n_h2o = get_index_snoman_h2o(wavelength0);
cos_theta_cerenkov = 1/(n_d2o*beta0);
sin_theta_cerenkov = sqrt(1-pow(cos_theta_cerenkov,2));
mu_indirect[j] = 0.0;
for (i = 0; i < MAX_PMTS; i++) {
if (pmts[i].pmt_type != PMT_NORMAL) continue;
/* Skip PMTs which weren't hit when doing the "fast" likelihood
* calculation. */
if (hit_only && !ev->pmt_hits[i].hit) continue;
if (fast) {
mu_direct[i][j] = get_total_charge_approx(beta0, v[j].pos, v[j].dir, p, i, smax, theta0, &ts[i][j], &mu_reflected, n_d2o, n_h2o, cos_theta_cerenkov, sin_theta_cerenkov);
ts[i][j] += v[j].t0;
mu_indirect[j] += mu_reflected;
continue;
}
double q_indirect;
integrate_path(path, i, &mu_direct[i][j], &q_indirect, &result);
mu_indirect[j] += q_indirect;
if (mu_direct[i][j] > 1e-9) {
ts[i][j] = v[j].t0 + result/mu_direct[i][j];
} else {
/* If the expected number of PE is very small, our estimate of
* the time can be crazy since the error in the total charge is
* in the denominator. Therefore, we estimate the time using
* the same technique as in get_total_charge_approx(). See that
* function for more details.
*
* Note: I don't really know how much this affects the likelihood.
* I should test it to see if we can get away with something even
* simpler (like just computing the distance from the start of the
* track to the PMT). */
ts[i][j] = v[j].t0 + guess_time(v[j].pos,v[j].dir,pmts[i].pos,smax,n_d2o,n_h2o,cos_theta_cerenkov,sin_theta_cerenkov);
}
integrate_path_shower(p,x,pdf,v[j].T0,v[j].pos,v[j].dir,i,npoints_shower,&mu_shower[i][j],&q_indirect,&result,&ts_sigma[i][j]);
mu_indirect[j] += q_indirect;
ts_shower[i][j] = v[j].t0 + result;
}
if (!fast) {
path_free(path);
free(x);
free(pdf);
}
particle_free(p);
}
mu_noise = DARK_RATE*GTVALID*1e-9;
mu_indirect_total = 0.0;
for (j = 0; j < n; j++) {
if (v[j].id == IDP_E_MINUS || v[j].id == IDP_E_PLUS)
mu_indirect_total += mu_indirect[j]*CHARGE_FRACTION_ELECTRON/10000.0;
else
mu_indirect_total += mu_indirect[j]*CHARGE_FRACTION_MUON/10000.0;
}
/* Compute the expected number of photons reaching each PMT by adding up
* the contributions from the noise hits and the direct, indirect, and
* shower light. */
for (i = 0; i < MAX_PMTS; i++) {
if (ev->pmt_hits[i].flags || pmts[i].pmt_type != PMT_NORMAL) continue;
/* Skip PMTs which weren't hit when doing the "fast" likelihood
* calculation. */
if (hit_only && !ev->pmt_hits[i].hit) continue;
for (j = 0; j < n; j++) {
if (fast)
mu[i] += mu_direct[i][j] + mu_noise;
else
mu[i] += mu_direct[i][j] + mu_shower[i][j] + mu_indirect_total + mu_noise;
}
}
if (fast)
min_ratio = MIN_RATIO_FAST;
else
min_ratio = MIN_RATIO;
/* Now, we actually compute the negative log likelihood. */
nhit = 0;
for (i = 0; i < MAX_PMTS; i++) {
if (ev->pmt_hits[i].flags || pmts[i].pmt_type != PMT_NORMAL) continue;
/* Skip PMTs which weren't hit when doing the "fast" likelihood
* calculation. */
if (hit_only && !ev->pmt_hits[i].hit) continue;
log_mu = log(mu[i]);
if (fast)
log_pt_fast = log_pt(ev->pmt_hits[i].t, 1, mu_noise, mu_indirect_total, &mu_direct[i][0], &mu_shower[i][0], n, &ts[i][0], &ts_shower[i][0], ts[i][0], PMT_TTS, &ts_sigma[i][0]);
if (ev->pmt_hits[i].hit) {
for (j = 1; j < MAX_PE; j++) {
logp[j] = get_log_pq(ev->pmt_hits[i].qhs,j) - mu[i] + j*log_mu - lnfact(j);
if (!charge_only) {
if (fast)
logp[j] += log_pt_fast;
else
logp[j] += log_pt(ev->pmt_hits[i].t, j, mu_noise, mu_indirect_total, &mu_direct[i][0], &mu_shower[i][0], n, &ts[i][0], &ts_shower[i][0], ts[i][0], PMT_TTS, &ts_sigma[i][0]);
}
if (j == 1 || logp[j] > max_logp) max_logp = logp[j];
if (logp[j] - max_logp < min_ratio*ln(10)) {
j++;
break;
}
}
nll[nhit++] = -logsumexp(logp+1, j-1);
} else {
logp[0] = -mu[i];
if (fast) {
nll[nhit++] = -logp[0];
continue;
}
for (j = 1; j < MAX_PE_NO_HIT; j++) {
logp[j] = get_log_pmiss(j) - mu[i] + j*log_mu - lnfact(j);
}
nll[nhit++] = -logsumexp(logp, MAX_PE_NO_HIT);
}
}
logp_path = 0.0;
for (j = 0; j < n; j++)
for (i = 0; i < v[j].n; i++)
logp_path += log_norm(v[j].z1[i],0,1) + log_norm(v[j].z2[i],0,1);
/* Add up the negative log likelihood terms from each PMT. I use a kahan
* sum here instead of just summing all the values to help prevent round
* off error. I actually don't think this makes any difference here since
* the numbers are all of the same order of magnitude, so I should actually
* test to see if it makes any difference. */
return kahan_sum(nll,nhit) - logp_path;
}
|