1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
|
#include "likelihood.h"
#include <stdlib.h> /* for size_t */
#include "pmt.h"
#include <gsl/gsl_integration.h>
#include "muon.h"
#include "misc.h"
#include <gsl/gsl_sf_gamma.h>
#include "sno.h"
#include "vector.h"
#include "event.h"
#include "optics.h"
#include "sno_charge.h"
#include "pdg.h"
#include "path.h"
#include <stddef.h> /* for size_t */
#include "scattering.h"
#include "solid_angle.h"
#include <gsl/gsl_roots.h>
#include <gsl/gsl_errno.h>
#include "pmt_response.h"
#include "electron.h"
#include "proton.h"
#include "id_particles.h"
particle *particle_init(int id, double T0, size_t n)
{
/* Returns a struct with arrays of the particle position and kinetic
* energy. This struct can then be passed to particle_get_energy() to
* interpolate the particle's kinetic energy at any point along the track.
* For example:
*
* particle *p = particle_init(IDP_MU_MINUS, 1000.0, 100);
* double T = particle_get_energy(x, p);
*
* To compute the kinetic energy as a function of distance we need to solve
* the following integral equation:
*
* T(x) = T0 - \int_0^x dT(T(x))/dx
*
* which we solve by dividing the track up into `n` segments and then
* numerically computing the energy at each step. */
size_t i;
double dEdx;
particle *p = malloc(sizeof(particle));
p->x = malloc(sizeof(double)*n);
p->T = malloc(sizeof(double)*n);
p->n = n;
p->x[0] = 0;
p->T[0] = T0;
switch (id) {
case IDP_E_MINUS:
case IDP_E_PLUS:
p->mass = ELECTRON_MASS;
/* We use the density of light water here since we don't have the
* tables for heavy water for electrons. */
p->range = electron_get_range(T0, WATER_DENSITY);
/* Now we loop over the points along the track and assume dE/dx is
* constant between points. */
for (i = 1; i < n; i++) {
p->x[i] = p->range*i/(n-1);
dEdx = electron_get_dEdx(p->T[i-1], WATER_DENSITY);
p->T[i] = p->T[i-1] - dEdx*(p->x[i]-p->x[i-1]);
}
/* Make sure that the energy is zero at the last step. This is so that
* when we try to bisect the point along the track where the speed of
* the particle is equal to BETA_MIN, we guarantee that there is a
* point along the track where the speed drops below BETA_MIN.
*
* A possible future improvement would be to dynamically compute the
* range here using the dE/dx table instead of reading in the range. */
p->T[n-1] = 0;
break;
case IDP_MU_MINUS:
case IDP_MU_PLUS:
p->mass = MUON_MASS;
/* We use the density of heavy water here since we only load the heavy
* water table for muons.
*
* FIXME: It would be nice in the future to load both tables and then
* load the correct table based on the media. */
p->range = muon_get_range(T0, HEAVY_WATER_DENSITY);
/* Now we loop over the points along the track and assume dE/dx is
* constant between points. */
for (i = 1; i < n; i++) {
p->x[i] = p->range*i/(n-1);
dEdx = muon_get_dEdx(p->T[i-1], HEAVY_WATER_DENSITY);
p->T[i] = p->T[i-1] - dEdx*(p->x[i]-p->x[i-1]);
}
/* Make sure that the energy is zero at the last step. This is so that
* when we try to bisect the point along the track where the speed of
* the particle is equal to BETA_MIN, we guarantee that there is a
* point along the track where the speed drops below BETA_MIN.
*
* A possible future improvement would be to dynamically compute the
* range here using the dE/dx table instead of reading in the range. */
p->T[n-1] = 0;
break;
case IDP_PROTON:
p->mass = PROTON_MASS;
/* We use the density of light water here since we don't have the
* tables for heavy water for protons. */
p->range = proton_get_range(T0, WATER_DENSITY);
/* Now we loop over the points along the track and assume dE/dx is
* constant between points. */
for (i = 1; i < n; i++) {
p->x[i] = p->range*i/(n-1);
dEdx = proton_get_dEdx(p->T[i-1], WATER_DENSITY);
p->T[i] = p->T[i-1] - dEdx*(p->x[i]-p->x[i-1]);
}
/* Make sure that the energy is zero at the last step. This is so that
* when we try to bisect the point along the track where the speed of
* the particle is equal to BETA_MIN, we guarantee that there is a
* point along the track where the speed drops below BETA_MIN.
*
* A possible future improvement would be to dynamically compute the
* range here using the dE/dx table instead of reading in the range. */
p->T[n-1] = 0;
break;
default:
fprintf(stderr, "unknown particle id %i\n", id);
exit(1);
}
return p;
}
double particle_get_energy(double x, particle *p)
{
/* Returns the approximate kinetic energy of a particle in water after
* travelling `x` cm with an initial kinetic energy `T`.
*
* Return value is in MeV. */
double T;
T = interp1d(x,p->x,p->T,p->n);
if (T < 0) return 0;
return T;
}
void particle_free(particle *p)
{
free(p->x);
free(p->T);
free(p);
}
static double get_expected_charge(double x, double beta, double theta0, double *pos, double *dir, double *pmt_pos, double *pmt_normal, double r, double *reflected, double n_d2o, double n_h2o, double l_d2o, double l_h2o)
{
double pmt_dir[3], cos_theta, n, omega, z, R, f, f_reflec, cos_theta_pmt, absorption_length_h2o, absorption_length_d2o, absorption_length_acrylic, l_acrylic, theta_pmt, charge;
z = 1.0;
SUB(pmt_dir,pmt_pos,pos);
normalize(pmt_dir);
cos_theta_pmt = DOT(pmt_dir,pmt_normal);
*reflected = 0.0;
if (cos_theta_pmt > 0) return 0.0;
/* Calculate the cosine of the angle between the track direction and the
* vector to the PMT. */
cos_theta = DOT(dir,pmt_dir);
omega = get_solid_angle_approx(pos,pmt_pos,pmt_normal,r);
R = NORM(pos);
if (R <= AV_RADIUS) {
n = n_d2o;
} else {
n = n_h2o;
}
*reflected = 0.0;
if (beta < 1/n) return 0.0;
theta_pmt = acos(-cos_theta_pmt);
f_reflec = get_weighted_pmt_reflectivity(theta_pmt);
f = get_weighted_pmt_response(theta_pmt);
absorption_length_d2o = get_weighted_absorption_length_snoman_d2o();
absorption_length_h2o = get_weighted_absorption_length_snoman_h2o();
absorption_length_acrylic = get_weighted_absorption_length_snoman_acrylic();
l_acrylic = AV_RADIUS_OUTER - AV_RADIUS_INNER;
charge = exp(-l_d2o/absorption_length_d2o-l_h2o/absorption_length_h2o-l_acrylic/absorption_length_acrylic)*omega*FINE_STRUCTURE_CONSTANT*z*z*(1-(1/(beta*beta*n*n)))*get_probability(beta, cos_theta, theta0);
*reflected = f_reflec*charge;
return f*charge;
}
double F(double t, double mu_noise, double mu_indirect, double *mu_direct, size_t n, double *ts, double tmean, double sigma)
{
/* Returns the CDF for the time distribution of photons at time `t`. */
size_t i;
double p, mu_total;
p = mu_noise*t/GTVALID + mu_indirect*(pow(sigma,2)*norm(tmean,t,sigma) + (t-tmean)*norm_cdf(t,tmean,sigma))/(GTVALID-tmean);
mu_total = mu_noise + mu_indirect;
for (i = 0; i < n; i++) {
p += mu_direct[i]*norm_cdf(t,ts[i],sigma);
mu_total += mu_direct[i];
}
return p/mu_total;
}
double f(double t, double mu_noise, double mu_indirect, double *mu_direct, size_t n, double *ts, double tmean, double sigma)
{
/* Returns the probability that a photon is detected at time `t`.
*
* The probability distribution is the sum of three different components:
* dark noise, indirect light, and direct light. The dark noise is assumed
* to be constant in time. The direct light is assumed to be a delta
* function around the times `ts`, where each element of `ts` comes from a
* different particle. This assumption is probably valid for particles
* like muons which don't scatter much, and the hope is that it is *good
* enough* for electrons too. The probability distribution for indirect
* light is assumed to be a step function past some time `tmean`.
*
* The probability returned is calculated by taking the sum of these three
* components and convolving it with a gaussian with standard deviation
* `sigma` which should typically be the PMT transit time spread. */
size_t i;
double p, mu_total;
p = mu_noise/GTVALID + mu_indirect*norm_cdf(t,tmean,sigma)/(GTVALID-tmean);
mu_total = mu_noise + mu_indirect;
for (i = 0; i < n; i++) {
p += mu_direct[i]*norm(t,ts[i],sigma);
mu_total += mu_direct[i];
}
return p/mu_total;
}
double log_pt(double t, size_t n, double mu_noise, double mu_indirect, double *mu_direct, size_t n2, double *ts, double tmean, double sigma)
{
/* Returns the first order statistic for observing a PMT hit at time `t`
* given `n` hits.
*
* The first order statistic is computed from the probability distribution
* above. It's not obvious whether one should take the first order
* statistic before or after convolving with the PMT transit time spread.
* Since at least some of the transit time spread in SNO comes from the
* different transit times across the face of the PMT, it seems better to
* convolve first which is what we do here. In addition, the problem is not
* analytically tractable if you do things the other way around. */
return ln(n) + (n-1)*log1p(-F(t,mu_noise,mu_indirect,mu_direct,n2,ts,tmean,sigma)) + log(f(t,mu_noise,mu_indirect,mu_direct,n2,ts,tmean,sigma));
}
static void integrate_path(path *p, int pmt, double a, double b, size_t n, double *mu_direct, double *mu_indirect, double *time)
{
size_t i;
double *qs, *q_indirects, *ts;
double dir[3], pos[3], n_d2o, n_h2o, wavelength0, t, theta0, beta, l_d2o, l_h2o, x;
qs = malloc(sizeof(double)*n);
q_indirects = malloc(sizeof(double)*n);
ts = malloc(sizeof(double)*n);
/* FIXME: I just calculate delta assuming 400 nm light. */
wavelength0 = 400.0;
n_d2o = get_index_snoman_d2o(wavelength0);
n_h2o = get_index_snoman_h2o(wavelength0);
for (i = 0; i < n; i++) {
x = a + i*(b-a)/(n-1);
path_eval(p, x, pos, dir, &beta, &t, &theta0);
get_path_length(pos,pmts[pmt].pos,AV_RADIUS,&l_d2o,&l_h2o);
t += l_d2o*n_d2o/SPEED_OF_LIGHT + l_h2o*n_h2o/SPEED_OF_LIGHT;
qs[i] = get_expected_charge(x, beta, theta0, pos, dir, pmts[pmt].pos, pmts[pmt].normal, PMT_RADIUS, q_indirects+i, n_d2o, n_h2o, l_d2o, l_h2o);
ts[i] = t*qs[i];
}
*mu_direct = trapz(qs,(b-a)/(n-1),n);
*mu_indirect = trapz(q_indirects,(b-a)/(n-1),n);
*time = trapz(ts,(b-a)/(n-1),n);
free(qs);
free(q_indirects);
free(ts);
}
static double get_total_charge_approx(double T0, double *pos, double *dir, particle *p, int i, double smax, double theta0, double *t, double *mu_reflected, double n_d2o, double n_h2o, double cos_theta_cerenkov, double sin_theta_cerenkov)
{
/* Returns the approximate expected number of photons seen by PMT `i` using
* an analytic formula.
*
* To come up with an analytic formula for the expected number of photons,
* it was necessary to make the following approximations:
*
* - the index of refraction is constant
* - the particle track is a straight line
* - the integral along the particle track is dominated by the gaussian
* term describing the angular distribution of the light
*
* With these approximations and a few other ones (like using a Taylor
* expansion for the distance to the PMT), it is possible to pull
* everything out of the track integral and assume it's equal to it's value
* along the track where the exponent of the gaussian dominates.
*
* The point along the track where the exponent dominates is calculated by
* finding the point along the track where the angle between the track
* direction and the PMT is equal to the Cerenkov angle. If this point is
* before the start of the track, we use the start of the track and if it's
* past the end of `smax` we use `smax`.
*
* Since the integral over the track also contains a term like
* (1-1/(beta**2*n**2)) which is not constant near the end of the track, it
* is necessary to define `smax` as the point along the track where the
* particle velocity drops below some threshold.
*
* `smax` is currently calculated as the point where the particle velocity
* drops to 0.8 times the speed of light. */
double pmt_dir[3], tmp[3], R, cos_theta, x, z, s, a, b, beta, E, mom, T, omega, sin_theta, E0, p0, beta0, f, cos_theta_pmt, theta_pmt, absorption_length_h2o, absorption_length_d2o, absorption_length_acrylic, l_h2o, l_d2o, l_acrylic, wavelength0, f_reflected, charge;
/* Calculate beta at the start of the track. */
E0 = T0 + p->mass;
p0 = sqrt(E0*E0 - p->mass*p->mass);
beta0 = p0/E0;
/* First, we find the point along the track where the PMT is at the
* Cerenkov angle. */
SUB(pmt_dir,pmts[i].pos,pos);
/* Compute the distance to the PMT. */
R = NORM(pmt_dir);
normalize(pmt_dir);
/* Calculate the cosine of the angle between the track direction and the
* vector to the PMT at the start of the track. */
cos_theta = DOT(dir,pmt_dir);
sin_theta = sqrt(1-pow(cos_theta,2));
/* Now, we compute the distance along the track where the PMT is at the
* Cerenkov angle.
*
* Note: This formula comes from using the "Law of sines" where the three
* vertices of the triangle are the starting position of the track, the
* point along the track that we want to find, and the PMT position. */
s = R*(sin_theta_cerenkov*cos_theta - cos_theta_cerenkov*sin_theta)/sin_theta_cerenkov;
/* Make sure that the point is somewhere along the track between 0 and
* `smax`. */
if (s < 0) s = 0.0;
else if (s > smax) s = smax;
/* Compute the vector from the point `s` along the track to the PMT. */
tmp[0] = pmts[i].pos[0] - (pos[0] + s*dir[0]);
tmp[1] = pmts[i].pos[1] - (pos[1] + s*dir[1]);
tmp[2] = pmts[i].pos[2] - (pos[2] + s*dir[2]);
/* To do the integral analytically, we expand the distance to the PMT along
* the track in a Taylor series around `s0`, i.e.
*
* r(s) = a + b*(s-s0)
*
* Here, we calculate `a` which is the distance to the PMT at the point
* `s`. */
a = NORM(tmp);
/* `z` is the distance to the PMT projected onto the track direction. */
z = R*cos_theta;
/* `x` is the perpendicular distance from the PMT position to the track. */
x = R*sqrt(1-pow(cos_theta,2));
/* `b` is the second coefficient in the Taylor expansion. */
b = (s-z)/a;
/* Compute the kinetic energy at the point `s` along the track. */
T = particle_get_energy(s,p);
/* Calculate the particle velocity at the point `s`. */
E = T + p->mass;
mom = sqrt(E*E - p->mass*p->mass);
beta = mom/E;
*t = 0.0;
*mu_reflected = 0.0;
if (beta < 1/n_d2o) return 0.0;
/* `prob` is the number of photons emitted per cm by the particle at a
* distance `s` along the track. */
double prob = get_probability2(beta);
/* Compute the position of the particle at a distance `s` along the track. */
tmp[0] = pos[0] + s*dir[0];
tmp[1] = pos[1] + s*dir[1];
tmp[2] = pos[2] + s*dir[2];
SUB(pmt_dir,pmts[i].pos,tmp);
cos_theta_pmt = DOT(pmt_dir,pmts[i].normal)/NORM(pmt_dir);
*t = 0.0;
*mu_reflected = 0.0;
if (cos_theta_pmt > 0) return 0.0;
/* Calculate the sine of the angle between the track direction and the PMT
* at the position `s` along the track. */
cos_theta = DOT(dir,pmt_dir)/NORM(pmt_dir);
sin_theta = sqrt(1-pow(cos_theta,2));
/* Get the solid angle of the PMT at the position `s` along the track. */
omega = get_solid_angle_fast(tmp,pmts[i].pos,pmts[i].normal,PMT_RADIUS);
theta0 = fmax(theta0*sqrt(s),MIN_THETA0);
double frac = sqrt(2)*n_d2o*x*beta0*theta0;
theta_pmt = acos(-cos_theta_pmt);
f = get_weighted_pmt_response(theta_pmt);
f_reflected = get_weighted_pmt_reflectivity(theta_pmt);
wavelength0 = 400.0;
absorption_length_d2o = get_absorption_length_snoman_d2o(wavelength0);
absorption_length_h2o = get_absorption_length_snoman_h2o(wavelength0);
absorption_length_acrylic = get_weighted_absorption_length_snoman_acrylic();
get_path_length(tmp,pmts[i].pos,AV_RADIUS,&l_d2o,&l_h2o);
l_acrylic = AV_RADIUS_OUTER - AV_RADIUS_INNER;
/* Assume the particle is travelling at the speed of light. */
*t = s/SPEED_OF_LIGHT + l_d2o*n_d2o/SPEED_OF_LIGHT + l_h2o*n_h2o/SPEED_OF_LIGHT;
charge = exp(-l_d2o/absorption_length_d2o-l_h2o/absorption_length_h2o-l_acrylic/absorption_length_acrylic)*n_d2o*x*beta0*prob*(1/sin_theta)*omega*(erf((a+b*(smax-s)+n_d2o*(smax-z)*beta0)/frac) + erf((-a+b*s+n_d2o*z*beta0)/frac))/(b+n_d2o*beta0)/(4*M_PI);
*mu_reflected = f_reflected*charge;
return f*charge;
}
typedef struct betaRootParams {
particle *p;
double beta_min;
} betaRootParams;
static double beta_root(double x, void *params)
{
/* Function used to find at what point along a track a particle crosses
* some threshold in beta. */
double T, E, mom, beta;
betaRootParams *pars;
pars = (betaRootParams *) params;
T = particle_get_energy(x, pars->p);
/* Calculate total energy */
E = T + pars->p->mass;
mom = sqrt(E*E - pars->p->mass*pars->p->mass);
beta = mom/E;
return beta - pars->beta_min;
}
static int get_smax(particle *p, double beta_min, double range, double *smax)
{
/* Find the point along the track at which the particle's velocity drops to
* `beta_min`. */
int status;
betaRootParams pars;
gsl_root_fsolver *s;
gsl_function F;
int iter = 0, max_iter = 100;
double r, x_lo, x_hi;
s = gsl_root_fsolver_alloc(gsl_root_fsolver_brent);
pars.p = p;
pars.beta_min = beta_min;
F.function = &beta_root;
F.params = &pars;
gsl_root_fsolver_set(s, &F, 0.0, range);
do {
iter++;
status = gsl_root_fsolver_iterate(s);
r = gsl_root_fsolver_root(s);
x_lo = gsl_root_fsolver_x_lower(s);
x_hi = gsl_root_fsolver_x_upper(s);
/* Find the root to within 1 mm. */
status = gsl_root_test_interval(x_lo, x_hi, 1e-1, 0);
if (status == GSL_SUCCESS) break;
} while (status == GSL_CONTINUE && iter < max_iter);
gsl_root_fsolver_free(s);
*smax = r;
return status;
}
static double getKineticEnergy(double x, void *p)
{
return particle_get_energy(x, (particle *) p);
}
double nll_muon(event *ev, int id, double T0, double *pos, double *dir, double t0, double *z1, double *z2, size_t n, size_t npoints, int fast)
{
size_t i, j, nhit;
double logp[MAX_PE], nll[MAX_PMTS], range, theta0, E0, p0, beta0, smax, log_mu, max_logp;
particle *p;
double pmt_dir[3], R, cos_theta, sin_theta, wavelength0, n_d2o, n_h2o, cos_theta_cerenkov, sin_theta_cerenkov, s, l_h2o, l_d2o;
double logp_path;
double a, b;
double tmp[3];
double mu_reflected;
path *path;
double mu_direct[MAX_PMTS];
double ts[MAX_PMTS];
double mu[MAX_PMTS];
double mu_noise, mu_indirect;
double result;
double min_ratio;
p = particle_init(id, T0, 10000);
range = p->range;
/* Calculate total energy */
E0 = T0 + p->mass;
p0 = sqrt(E0*E0 - p->mass*p->mass);
beta0 = p0/E0;
/* FIXME: is this formula valid for muons? */
theta0 = get_scattering_rms(range/2,p0,beta0,1.0)/sqrt(range/2);
if (!fast)
path = path_init(pos, dir, T0, range, theta0, getKineticEnergy, p, z1, z2, n, p->mass);
if (beta0 > BETA_MIN)
get_smax(p, BETA_MIN, range, &smax);
else
smax = 0.0;
/* Compute the Cerenkov angle at the start of the track. */
wavelength0 = 400.0;
n_d2o = get_index_snoman_d2o(wavelength0);
n_h2o = get_index_snoman_h2o(wavelength0);
cos_theta_cerenkov = 1/(n_d2o*beta0);
sin_theta_cerenkov = sqrt(1-pow(cos_theta_cerenkov,2));
mu_indirect = 0.0;
for (i = 0; i < MAX_PMTS; i++) {
if (pmts[i].pmt_type != PMT_NORMAL) continue;
/* Skip PMTs which weren't hit when doing the "fast" likelihood
* calculation. */
if (fast && !ev->pmt_hits[i].hit) continue;
if (fast) {
mu_direct[i] = get_total_charge_approx(T0, pos, dir, p, i, smax, theta0, &ts[i], &mu_reflected, n_d2o, n_h2o, cos_theta_cerenkov, sin_theta_cerenkov);
ts[i] += t0;
mu_indirect += mu_reflected;
} else {
/* First, we try to compute the distance along the track where the
* PMT is at the Cerenkov angle. The reason for this is because for
* heavy particles like muons which don't scatter much, the
* probability distribution for getting a photon hit along the
* track looks kind of like a delta function, i.e. the PMT is only
* hit over a very narrow window when the angle between the track
* direction and the PMT is *very* close to the Cerenkov angle
* (it's not a perfect delta function since there is some width due
* to dispersion). In this case, it's possible that the numerical
* integration completely skips over the delta function and so
* predicts an expected charge of 0.
*
* To fix this, we only integrate 1 meter on both sides of the
* point along the track where the PMT is at the Cerenkov angle. */
/* First, we find the point along the track where the PMT is at the
* Cerenkov angle. */
SUB(pmt_dir,pmts[i].pos,pos);
/* Compute the distance to the PMT. */
R = NORM(pmt_dir);
normalize(pmt_dir);
/* Calculate the cosine of the angle between the track direction and the
* vector to the PMT at the start of the track. */
cos_theta = DOT(dir,pmt_dir);
sin_theta = sqrt(1-pow(cos_theta,2));
/* Now, we compute the distance along the track where the PMT is at the
* Cerenkov angle.
*
* Note: This formula comes from using the "Law of sines" where the three
* vertices of the triangle are the starting position of the track, the
* point along the track that we want to find, and the PMT position. */
s = R*(sin_theta_cerenkov*cos_theta - cos_theta_cerenkov*sin_theta)/sin_theta_cerenkov;
/* Make sure that the point is somewhere along the track between 0 and
* `smax`. */
if (s < 0) s = 0.0;
else if (s > smax) s = smax;
/* Compute the endpoints of the integration. */
a = s - 100.0;
b = s + 100.0;
if (a < 0.0) a = 0.0;
if (b > range) b = range;
double q_indirect;
integrate_path(path, i, a, b, npoints, mu_direct+i, &q_indirect, &result);
mu_indirect += q_indirect;
if (mu_direct[i] > 1e-9) {
ts[i] = t0 + result/mu_direct[i];
} else {
/* If the expected number of PE is very small, our estimate of
* the time can be crazy since the error in the total charge is
* in the denominator. Therefore, we estimate the time using
* the same technique as in get_total_charge_approx(). See that
* function for more details. */
n_h2o = get_index_snoman_h2o(wavelength0);
/* Compute the position of the particle at a distance `s` along the track. */
tmp[0] = pos[0] + s*dir[0];
tmp[1] = pos[1] + s*dir[1];
tmp[2] = pos[2] + s*dir[2];
SUB(pmt_dir,pmts[i].pos,tmp);
get_path_length(tmp,pmts[i].pos,AV_RADIUS,&l_d2o,&l_h2o);
/* Assume the particle is travelling at the speed of light. */
ts[i] = t0 + s/SPEED_OF_LIGHT + l_d2o*n_d2o/SPEED_OF_LIGHT + l_h2o*n_h2o/SPEED_OF_LIGHT;
}
}
}
if (!fast)
path_free(path);
particle_free(p);
mu_noise = DARK_RATE*GTVALID*1e-9;
mu_indirect *= CHARGE_FRACTION/10000.0;
for (i = 0; i < MAX_PMTS; i++) {
if (ev->pmt_hits[i].flags || pmts[i].pmt_type != PMT_NORMAL) continue;
/* Skip PMTs which weren't hit when doing the "fast" likelihood
* calculation. */
if (fast && !ev->pmt_hits[i].hit) continue;
if (fast)
mu[i] = mu_direct[i] + mu_noise;
else
mu[i] = mu_direct[i] + mu_indirect + mu_noise;
}
if (fast)
min_ratio = MIN_RATIO_FAST;
else
min_ratio = MIN_RATIO;
nhit = 0;
for (i = 0; i < MAX_PMTS; i++) {
if (ev->pmt_hits[i].flags || pmts[i].pmt_type != PMT_NORMAL) continue;
/* Skip PMTs which weren't hit when doing the "fast" likelihood
* calculation. */
if (fast && !ev->pmt_hits[i].hit) continue;
log_mu = log(mu[i]);
if (ev->pmt_hits[i].hit) {
for (j = 1; j < MAX_PE; j++) {
logp[j] = log(pq(ev->pmt_hits[i].qhs,j)) - mu[i] + j*log_mu - lnfact(j) + log_pt(ev->pmt_hits[i].t, j, mu_noise, mu_indirect, &mu_direct[i], 1, &ts[i], ts[i], PMT_TTS);
if (j == 1 || logp[j] > max_logp) max_logp = logp[j];
if (logp[j] - max_logp < min_ratio*ln(10)) {
j++;
break;
}
}
nll[nhit++] = -logsumexp(logp+1, j-1);
} else {
logp[0] = -mu[i];
if (fast) {
nll[nhit++] = -logp[0];
continue;
}
for (j = 1; j < MAX_PE_NO_HIT; j++) {
logp[j] = get_log_pmiss(j) - mu[i] + j*log_mu - lnfact(j);
}
nll[nhit++] = -logsumexp(logp, MAX_PE_NO_HIT);
}
}
logp_path = 0.0;
for (i = 0; i < n; i++)
logp_path += log_norm(z1[i],0,1) + log_norm(z2[i],0,1);
return kahan_sum(nll,nhit) - logp_path;
}
|