1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
|
#include "find_peaks.h"
#include "vector.h"
#include "event.h"
#include "pmt.h"
#include <stddef.h> /* for size_t */
#include <stdlib.h> /* for malloc() */
#include "optics.h"
#include <math.h> /* for exp() */
void find_peaks_array(double *x, size_t n, size_t m, size_t *imax, size_t *jmax, size_t *npeaks, size_t max_peaks, double threshold)
{
/* Find a maximum of `max_peaks` in the 2D array `x` indexed as:
*
* x[i,j] = x[i*m + j]
*
* and store the indices in the two arrays `imax` and `jmax`.
*
* Peaks are defined as any array element which is greater than all 8 of
* it's neighbors. Peaks are also required to be at least max*threshold
* times as high as the highest peak. */
size_t i, j;
double max;
if (n*m == 0) {
*npeaks = 0;
return;
}
/* First, find the highest value in the array (which is guaranteed to be a peak). */
max = x[0];
imax[0] = 0;
jmax[0] = 0;
for (i = 0; i < n; i++) {
for (j = 0; j < m; j++) {
if (x[i*m + j] > max) {
max = x[i*m + j];
imax[0] = i;
jmax[0] = j;
}
}
}
*npeaks = 1;
/* Now we look for other peaks which are at least max*threshold high. */
for (i = 0; i < n; i++) {
for (j = 0; j < m; j++) {
if (x[i*m + j] <= max*threshold) continue;
if (i == imax[0] && j == jmax[0]) continue;
/* Check to see if it is actually a peak. */
if (x[i*m + (j+1) % m] < x[i*m + j] && /* 0 +1 */
x[i*m + (j+m-1) % m] < x[i*m + j] && /* 0 -1 */
x[((i+1) % n)*m + j] < x[i*m + j] && /* +1 0 */
x[((i+1) % n)*m + (j+1) % m] < x[i*m + j] && /* +1 +1 */
x[((i+1) % n)*m + (j+m-1) % m] < x[i*m + j] && /* +1 -1 */
x[((i+n-1) % n)*m + j] < x[i*m + j] && /* -1 0 */
x[((i+n-1) % n)*m + (j+1) % m] < x[i*m + j] && /* -1 +1 */
x[((i+n-1) % n)*m + (j+m-1) % m] < x[i*m + j]) { /* -1 -1 */
imax[*npeaks] = i;
jmax[*npeaks] = j;
*npeaks += 1;
if (*npeaks >= max_peaks) goto end;
}
}
}
end:
return;
}
void get_hough_transform(event *ev, double *pos, double *x, double *y, size_t n, size_t m, double *result)
{
/* Computes the "Hough transform" of the event `ev` and stores it in `result`. */
size_t i, j, k;
double dir[3], pmt_dir[3], cos_theta;
double wavelength0 = 400.0;
double n_d2o = get_index_snoman_d2o(wavelength0);
for (i = 0; i < MAX_PMTS; i++) {
if (pmts[i].pmt_type != PMT_NORMAL || !ev->pmt_hits[i].hit) continue;
SUB(pmt_dir,pmts[i].pos,pos);
normalize(pmt_dir);
for (j = 0; j < n; j++) {
for (k = 0; k < m; k++) {
double r = 1+x[j]*x[j]+y[k]*y[k];
dir[0] = 2*x[j]/r;
dir[1] = 2*y[k]/r;
dir[2] = (-1+x[j]*x[j]+y[k]*y[k])/r;
cos_theta = DOT(pmt_dir,dir);
result[j*m + k] += ev->pmt_hits[i].qhs*exp(-fabs(cos_theta-1.0/n_d2o)/0.1);
}
}
}
}
void find_peaks(event *ev, double *pos, size_t n, size_t m, double *peak_theta, double *peak_phi, size_t *npeaks, size_t max_peaks, double threshold)
{
size_t i;
double *x = calloc(n,sizeof(double));
double *y = calloc(m,sizeof(double));
double *result = calloc(n*m,sizeof(double));
for (i = 0; i < n; i++) {
x[i] = -10 + 20.0*i/(n-1);
}
for (i = 0; i < m; i++) {
y[i] = -10 + 20.0*i/(m-1);
}
get_hough_transform(ev,pos,x,y,n,m,result);
size_t *imax = calloc(max_peaks,sizeof(size_t));
size_t *jmax = calloc(max_peaks,sizeof(size_t));
find_peaks_array(result,n,m,imax,jmax,npeaks,max_peaks,threshold);
for (i = 0; i < *npeaks; i++) {
double R, theta;
R = sqrt(x[imax[i]]*x[imax[i]]+y[jmax[i]]*y[jmax[i]]);
theta = atan2(y[jmax[i]],x[imax[i]]);
peak_theta[i] = 2*atan(1/R);
peak_phi[i] = theta;
}
free(imax);
free(jmax);
free(x);
free(y);
free(result);
}
|