aboutsummaryrefslogtreecommitdiff
path: root/src/find_peaks.c
blob: 6109896c3bb5762beba062aca842e493bb912738 (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
/* Copyright (c) 2019, Anthony Latorre <tlatorre at uchicago>
 *
 * This program is free software: you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the Free
 * Software Foundation, either version 3 of the License, or (at your option)
 * any later version.

 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
 * more details.

 * You should have received a copy of the GNU General Public License along with
 * this program. If not, see <https://www.gnu.org/licenses/>.
 */

#include "find_peaks.h"
#include "vector.h"
#include "event.h"
#include "pmt.h"
#include <stddef.h> /* for size_t */
#include <stdlib.h> /* for malloc() */
#include "optics.h"
#include <math.h> /* for exp() */
#include "misc.h"
#include "pmt.h"

typedef struct peak {
    size_t i;
    size_t j;
    double value;
} peak;

/* Compare two different peaks.
 *
 * Note: We return 1 if peak b is greater than peak b and -1 if peak a is
 * greater than peak b. This is backwards from what you would normally expect,
 * but it's because we want to keep the peaks sorted in *descending* order. */
static int peak_compare(const void *a, const void *b)
{
    const peak *pa = (peak *) a;
    const peak *pb = (peak *) b;

    if (pa->value > pb->value)
        return -1;
    else if (pa->value < pb->value)
        return 1;

    return 0;
}

void find_peaks_array(double *x, size_t n, size_t m, size_t *imax, size_t *jmax, size_t *npeaks, size_t max_peaks, double threshold)
{
    /* Find a maximum of `max_peaks` in the 2D array `x` indexed as:
     *
     *     x[i,j] = x[i*m + j]
     *
     *  and store the indices in the two arrays `imax` and `jmax`.
     *
     *  Peaks are defined as any array element which is greater than all 8 of
     *  it's neighbors. Peaks are also required to be at least max*threshold
     *  times as high as the highest peak.
     *
     *  The returned peaks will always be the *highest* peaks and they will be
     *  returned in sorted order from highest to lowest. */
    size_t i, j;
    double max;
    peak *p;

    if (n*m == 0) {
        *npeaks = 0;
        return;
    }

    p = malloc(sizeof(peak)*(max_peaks+1));

    /* First, find the highest value in the array (which is guaranteed to be a peak). */
    max = x[0];
    p[0].i = 0;
    p[0].j = 0;
    p[0].value = max;
    for (i = 0; i < n; i++) {
        for (j = 0; j < m; j++) {
            if (x[i*m + j] > max) {
                max = x[i*m + j];
                p[0].i = i;
                p[0].j = j;
                p[0].value = max;
            }
        }
    }

    *npeaks = 1;

    if (*npeaks >= max_peaks) goto end;

    /* Now we look for other peaks which are at least max*threshold high. */
    for (i = 0; i < n; i++) {
        for (j = 0; j < m; j++) {
            if (x[i*m + j] <= max*threshold) continue;

            if (i == p[0].i && j == p[0].j) continue;

            /* Check to see if it is actually a peak. */
            if (x[i*m + (j+1) % m] < x[i*m + j]               && /* 0 +1 */
                x[i*m + (j+m-1) % m] < x[i*m + j]             && /* 0 -1 */
                x[((i+1) % n)*m + j] < x[i*m + j]             && /* +1 0 */
                x[((i+1) % n)*m + (j+1) % m] < x[i*m + j]     && /* +1 +1 */
                x[((i+1) % n)*m + (j+m-1) % m] < x[i*m + j]   && /* +1 -1 */
                x[((i+n-1) % n)*m + j] < x[i*m + j]           && /* -1 0 */
                x[((i+n-1) % n)*m + (j+1) % m] < x[i*m + j]   && /* -1 +1 */
                x[((i+n-1) % n)*m + (j+m-1) % m] < x[i*m + j]) { /* -1 -1 */
                p[*npeaks].i = i;
                p[*npeaks].j = j;
                p[*npeaks].value = x[i*m+j];
                *npeaks += 1;

                qsort(p,*npeaks,sizeof(peak),peak_compare);

                if (*npeaks >= max_peaks) *npeaks = max_peaks;
            }
        }
    }

end:
    for (i = 0; i < *npeaks; i++) {
        imax[i] = p[i].i;
        jmax[i] = p[i].j;
    }

    free(p);

    return;
}

double get_qhs_avg(event *ev, double *pos, double *dir)
{
    /* Returns the average QHS value for all PMTs within the Cerenkov cone of a
     * particle at position `pos` travelling in direction `dir`. */
    size_t i;
    double qhs_sum, n_d2o;
    double pmt_dir[3];
    size_t n;

    n_d2o = get_index_snoman_d2o(400.0);

    n = 0;
    qhs_sum = 0.0;
    for (i = 0; i < MAX_PMTS; i++) {
        if (ev->pmt_hits[i].flags || pmts[i].pmt_type != PMT_NORMAL || !ev->pmt_hits[i].hit) continue;
        SUB(pmt_dir,pmts[i].pos,pos);
        normalize(pmt_dir);
        if (DOT(pmt_dir,dir) > 1/n_d2o) {
            qhs_sum += ev->pmt_hits[i].q;
            n += 1;
        }
    }

    return qhs_sum/n;
}

void get_hough_transform(event *ev, double *pos, double *x, double *y, size_t n, size_t m, double *result, double *last, size_t len)
{
    /* Computes the "Hough transform" of the event `ev` and stores it in `result`. */
    size_t i, j, k;
    double dir[3], pmt_dir[3], cos_theta2;
    int skip;
    double *sin_theta, *cos_theta, *sin_phi, *cos_phi;
    double wavelength0, n_d2o;
    double qhs[MAX_PMTS], qhs_avg;

    sin_theta = malloc(sizeof(double)*n);
    cos_theta = malloc(sizeof(double)*n);
    sin_phi = malloc(sizeof(double)*n);
    cos_phi = malloc(sizeof(double)*n);

    wavelength0 = 400.0;
    n_d2o = get_index_snoman_d2o(wavelength0);

    /* Precompute sin(theta), cos(theta), sin(phi), and cos(phi) to speed
     * things up. */
    for (i = 0; i < n; i++) {
        sin_theta[i] = sin(x[i]);
        cos_theta[i] = cos(x[i]);
    }

    for (i = 0; i < m; i++) {
        sin_phi[i] = sin(y[i]);
        cos_phi[i] = cos(y[i]);
    }

    for (i = 0; i < MAX_PMTS; i++) {
        if (ev->pmt_hits[i].flags || pmts[i].pmt_type != PMT_NORMAL || !ev->pmt_hits[i].hit) continue;
        qhs[i] = ev->pmt_hits[i].q;
    }

    /* Subtract off previous rings. */
    for (i = 0; i < len; i++) {
        qhs_avg = get_qhs_avg(ev,pos,last+3*i);

        for (j = 0; j < MAX_PMTS; j++) {
            if (ev->pmt_hits[j].flags || pmts[j].pmt_type != PMT_NORMAL || !ev->pmt_hits[j].hit) continue;

            SUB(pmt_dir,pmts[j].pos,pos);

            normalize(pmt_dir);

            cos_theta2 = DOT(pmt_dir,last+3*i);

            qhs[j] -= qhs_avg*exp(-fabs(cos_theta2-1.0/n_d2o)/0.1);

            if (qhs[j] < 0.0) qhs[j] = 0.0;
        }
    }

    /* Zero out the result array. */
    for (i = 0; i < n*m; i++) result[i] = 0.0;

    for (i = 0; i < MAX_PMTS; i++) {
        if (ev->pmt_hits[i].flags || pmts[i].pmt_type != PMT_NORMAL || !ev->pmt_hits[i].hit) continue;

        SUB(pmt_dir,pmts[i].pos,pos);

        normalize(pmt_dir);

        /* Ignore PMT hits within the Cerenkov cone of previously found peaks. */
        skip = 0;
        for (j = 0; j < len; j++) {
            if (DOT(pmt_dir,last+3*j) > 1/n_d2o) {
                skip = 1;
                break;
            }
        }

        if (skip) continue;

        for (j = 0; j < n; j++) {
            for (k = 0; k < m; k++) {
                dir[0] = sin_theta[j]*cos_phi[k];
                dir[1] = sin_theta[j]*sin_phi[k];
                dir[2] = cos_theta[j];

                cos_theta2 = DOT(pmt_dir,dir);

                result[j*n + k] += qhs[i]*exp(-fabs(cos_theta2-1.0/n_d2o)/0.1);
            }
        }
    }

    free(sin_theta);
    free(cos_theta);
    free(sin_phi);
    free(cos_phi);
}

/* Finds rings in the event `ev` by looking for peaks in the Hough transform.
 * The directions of potential particle rings are stored in the arrays
 * `peak_theta` and `peak_phi`. The number of rings found are stored in the
 * variable `npeaks`.
 *
 * This function first computes the Hough transform of the event `ev` and looks
 * for the highest peak. The next peak is then found by computing the Hough
 * transform after subtracting off the previous ring and ignoring any PMTs
 * within the Cerenkov cone of the first peak. This process is repeated until
 * `max_peaks` peaks are found.
 *
 * In addition, only peaks which are `delta` radians away from other peaks are
 * returned. So, for example if three peaks are found but the first two are
 * very close to each other, this function will only return the first and the
 * third peaks. */
void find_peaks(event *ev, double *pos, size_t n, size_t m, double *peak_theta, double *peak_phi, size_t *npeaks, size_t max_peaks, double delta)
{
    size_t i, j;
    double *x, *y, *result, *dir;
    size_t *imax, *jmax;
    size_t max;
    double theta, phi;
    int unique;

    x = calloc(n,sizeof(double));
    y = calloc(m,sizeof(double));
    result = malloc(n*m*sizeof(double));
    dir = calloc(max_peaks*3,sizeof(double));

    for (i = 0; i < n; i++) {
        x[i] = i*M_PI/(n-1);
    }

    for (i = 0; i < m; i++) {
        y[i] = i*2*M_PI/(m-1);
    }

    imax = calloc(max_peaks,sizeof(size_t));
    jmax = calloc(max_peaks,sizeof(size_t));

    *npeaks = 0;

    for (i = 0; i < max_peaks; i++) {
        get_hough_transform(ev,pos,x,y,n,m,result,dir,i);
        max = argmax(result,n*m);
        theta = x[max/m];
        phi = y[max % m];
        get_dir(dir+i*3,theta,phi);

        /* Only add the latest peak to the results if it's more than `delta`
         * radians away from all other results so far. */
        unique = 1;
        for (j = 0; j < *npeaks; j++) {
            /* If the angle between the latest peak and a previous peak is
             * within `delta` radians, it's not unique. */
            if (acos(DOT(dir+i*3,dir+j*3)) < delta) unique = 0;
        }

        /* Add it to the results if it's unique. */
        if (unique) {
            peak_theta[*npeaks] = theta;
            peak_phi[*npeaks] = phi;
            *npeaks += 1;
        }
    }

    free(imax);
    free(jmax);
    free(x);
    free(y);
    free(result);
    free(dir);
}