1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
|
#include "find_peaks.h"
#include "vector.h"
#include "event.h"
#include "pmt.h"
#include <stddef.h> /* for size_t */
#include <stdlib.h> /* for malloc() */
#include "optics.h"
#include <math.h> /* for exp() */
#include "misc.h"
typedef struct peak {
size_t i;
size_t j;
double value;
} peak;
/* Compare two different peaks.
*
* Note: We return 1 if peak b is greater than peak b and -1 if peak a is
* greater than peak b. This is backwards from what you would normally expect,
* but it's because we want to keep the peaks sorted in *descending* order. */
static int peak_compare(const void *a, const void *b)
{
const peak *pa = (peak *) a;
const peak *pb = (peak *) b;
if (pa->value > pb->value)
return -1;
else if (pa->value < pb->value)
return 1;
return 0;
}
void find_peaks_array(double *x, size_t n, size_t m, size_t *imax, size_t *jmax, size_t *npeaks, size_t max_peaks, double threshold)
{
/* Find a maximum of `max_peaks` in the 2D array `x` indexed as:
*
* x[i,j] = x[i*m + j]
*
* and store the indices in the two arrays `imax` and `jmax`.
*
* Peaks are defined as any array element which is greater than all 8 of
* it's neighbors. Peaks are also required to be at least max*threshold
* times as high as the highest peak.
*
* The returned peaks will always be the *highest* peaks and they will be
* returned in sorted order from highest to lowest. */
size_t i, j;
double max;
peak *p;
if (n*m == 0) {
*npeaks = 0;
return;
}
p = malloc(sizeof(peak)*(max_peaks+1));
/* First, find the highest value in the array (which is guaranteed to be a peak). */
max = x[0];
p[0].i = 0;
p[0].j = 0;
p[0].value = max;
for (i = 0; i < n; i++) {
for (j = 0; j < m; j++) {
if (x[i*m + j] > max) {
max = x[i*m + j];
p[0].i = i;
p[0].j = j;
p[0].value = max;
}
}
}
*npeaks = 1;
if (*npeaks >= max_peaks) goto end;
/* Now we look for other peaks which are at least max*threshold high. */
for (i = 0; i < n; i++) {
for (j = 0; j < m; j++) {
if (x[i*m + j] <= max*threshold) continue;
if (i == p[0].i && j == p[0].j) continue;
/* Check to see if it is actually a peak. */
if (x[i*m + (j+1) % m] < x[i*m + j] && /* 0 +1 */
x[i*m + (j+m-1) % m] < x[i*m + j] && /* 0 -1 */
x[((i+1) % n)*m + j] < x[i*m + j] && /* +1 0 */
x[((i+1) % n)*m + (j+1) % m] < x[i*m + j] && /* +1 +1 */
x[((i+1) % n)*m + (j+m-1) % m] < x[i*m + j] && /* +1 -1 */
x[((i+n-1) % n)*m + j] < x[i*m + j] && /* -1 0 */
x[((i+n-1) % n)*m + (j+1) % m] < x[i*m + j] && /* -1 +1 */
x[((i+n-1) % n)*m + (j+m-1) % m] < x[i*m + j]) { /* -1 -1 */
p[*npeaks].i = i;
p[*npeaks].j = j;
p[*npeaks].value = x[i*m+j];
*npeaks += 1;
qsort(p,*npeaks,sizeof(peak),peak_compare);
if (*npeaks >= max_peaks) *npeaks = max_peaks;
}
}
}
end:
for (i = 0; i < *npeaks; i++) {
imax[i] = p[i].i;
jmax[i] = p[i].j;
}
free(p);
return;
}
void get_hough_transform(event *ev, double *pos, double *x, double *y, size_t n, size_t m, double *result, double *last, size_t len)
{
/* Computes the "Hough transform" of the event `ev` and stores it in `result`. */
size_t i, j, k;
double dir[3], pmt_dir[3], cos_theta2;
int skip;
double *sin_theta, *cos_theta, *sin_phi, *cos_phi;
double wavelength0, n_d2o;
sin_theta = malloc(sizeof(double)*n);
cos_theta = malloc(sizeof(double)*n);
sin_phi = malloc(sizeof(double)*n);
cos_phi = malloc(sizeof(double)*n);
wavelength0 = 400.0;
n_d2o = get_index_snoman_d2o(wavelength0);
/* Precompute sin(theta), cos(theta), sin(phi), and cos(phi) to speed
* things up. */
for (i = 0; i < n; i++) {
sin_theta[i] = sin(x[i]);
cos_theta[i] = cos(x[i]);
}
for (i = 0; i < m; i++) {
sin_phi[i] = sin(y[i]);
cos_phi[i] = cos(y[i]);
}
/* Zero out the result array. */
for (i = 0; i < n*m; i++) result[i] = 0.0;
for (i = 0; i < MAX_PMTS; i++) {
if (pmts[i].pmt_type != PMT_NORMAL || !ev->pmt_hits[i].hit) continue;
SUB(pmt_dir,pmts[i].pos,pos);
normalize(pmt_dir);
/* Ignore PMT hits within the Cerenkov cone of previously found peaks. */
skip = 0;
for (j = 0; j < len; j++) {
if (DOT(pmt_dir,last+3*j) > 1/n_d2o) {
skip = 1;
break;
}
}
if (skip) continue;
for (j = 0; j < n; j++) {
for (k = 0; k < m; k++) {
dir[0] = sin_theta[j]*cos_phi[k];
dir[1] = sin_theta[j]*sin_phi[k];
dir[2] = cos_theta[j];
cos_theta2 = DOT(pmt_dir,dir);
result[j*n + k] += ev->pmt_hits[i].qhs*exp(-fabs(cos_theta2-1.0/n_d2o)/0.1);
}
}
}
free(sin_theta);
free(cos_theta);
free(sin_phi);
free(cos_phi);
}
void find_peaks(event *ev, double *pos, size_t n, size_t m, double *peak_theta, double *peak_phi, size_t *npeaks, size_t max_peaks)
{
/* Finds rings in the event `ev` by looking for peaks in the Hough
* transform. The directions of potential particle rings are stored in the
* arrays `peak_theta` and `peak_phi`. The number of rings found are stored
* in the variable `npeaks`.
*
* This function first computes the Hough transform of the event `ev` and
* looks for the highest peak. The next peak is then found by computing the
* Hough transform ignoring any PMTs within the Cerenkov cone of the first
* peak. This process is repeated until `max_peaks` peaks are found. */
size_t i;
double *x, *y, *result, *dir;
size_t *imax, *jmax;
size_t max;
x = calloc(n,sizeof(double));
y = calloc(m,sizeof(double));
result = malloc(n*m*sizeof(double));
dir = calloc(max_peaks*3,sizeof(double));
for (i = 0; i < n; i++) {
x[i] = i*M_PI/(n-1);
}
for (i = 0; i < m; i++) {
y[i] = i*2*M_PI/(m-1);
}
imax = calloc(max_peaks,sizeof(size_t));
jmax = calloc(max_peaks,sizeof(size_t));
for (i = 0; i < max_peaks; i++) {
get_hough_transform(ev,pos,x,y,n,m,result,dir,i);
max = argmax(result,n*m);
peak_theta[i] = x[max/m];
peak_phi[i] = y[max % m];
get_dir(dir+i*3,peak_theta[i],peak_phi[i]);
}
*npeaks = max_peaks;
free(imax);
free(jmax);
free(x);
free(y);
free(result);
free(dir);
}
|