1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
|
#include "find_peaks.h"
#include "vector.h"
#include "event.h"
#include "pmt.h"
#include <stddef.h> /* for size_t */
#include <stdlib.h> /* for malloc() */
#include "optics.h"
#include <math.h> /* for exp() */
typedef struct peak {
size_t i;
size_t j;
double value;
} peak;
/* Compare two different peaks.
*
* Note: We return 1 if peak b is greater than peak b and -1 if peak a is
* greater than peak b. This is backwards from what you would normally expect,
* but it's because we want to keep the peaks sorted in *descending* order. */
static int peak_compare(const void *a, const void *b)
{
const peak *pa = (peak *) a;
const peak *pb = (peak *) b;
if (pa->value > pb->value)
return -1;
else if (pa->value < pb->value)
return 1;
return 0;
}
void find_peaks_array(double *x, size_t n, size_t m, size_t *imax, size_t *jmax, size_t *npeaks, size_t max_peaks, double threshold)
{
/* Find a maximum of `max_peaks` in the 2D array `x` indexed as:
*
* x[i,j] = x[i*m + j]
*
* and store the indices in the two arrays `imax` and `jmax`.
*
* Peaks are defined as any array element which is greater than all 8 of
* it's neighbors. Peaks are also required to be at least max*threshold
* times as high as the highest peak.
*
* The returned peaks will always be the *highest* peaks and they will be
* returned in sorted order from highest to lowest. */
size_t i, j;
double max;
peak *p;
if (n*m == 0) {
*npeaks = 0;
return;
}
p = malloc(sizeof(peak)*(max_peaks+1));
/* First, find the highest value in the array (which is guaranteed to be a peak). */
max = x[0];
p[0].i = 0;
p[0].j = 0;
p[0].value = max;
for (i = 0; i < n; i++) {
for (j = 0; j < m; j++) {
if (x[i*m + j] > max) {
max = x[i*m + j];
p[0].i = i;
p[0].j = j;
p[0].value = max;
}
}
}
*npeaks = 1;
if (*npeaks >= max_peaks) goto end;
/* Now we look for other peaks which are at least max*threshold high. */
for (i = 0; i < n; i++) {
for (j = 0; j < m; j++) {
if (x[i*m + j] <= max*threshold) continue;
if (i == p[0].i && j == p[0].j) continue;
/* Check to see if it is actually a peak. */
if (x[i*m + (j+1) % m] < x[i*m + j] && /* 0 +1 */
x[i*m + (j+m-1) % m] < x[i*m + j] && /* 0 -1 */
x[((i+1) % n)*m + j] < x[i*m + j] && /* +1 0 */
x[((i+1) % n)*m + (j+1) % m] < x[i*m + j] && /* +1 +1 */
x[((i+1) % n)*m + (j+m-1) % m] < x[i*m + j] && /* +1 -1 */
x[((i+n-1) % n)*m + j] < x[i*m + j] && /* -1 0 */
x[((i+n-1) % n)*m + (j+1) % m] < x[i*m + j] && /* -1 +1 */
x[((i+n-1) % n)*m + (j+m-1) % m] < x[i*m + j]) { /* -1 -1 */
p[*npeaks].i = i;
p[*npeaks].j = j;
p[*npeaks].value = x[i*m+j];
*npeaks += 1;
qsort(p,*npeaks,sizeof(peak),peak_compare);
if (*npeaks >= max_peaks) *npeaks = max_peaks;
}
}
}
end:
for (i = 0; i < *npeaks; i++) {
imax[i] = p[i].i;
jmax[i] = p[i].j;
}
free(p);
return;
}
void get_hough_transform(event *ev, double *pos, double *x, double *y, size_t n, size_t m, double *result)
{
/* Computes the "Hough transform" of the event `ev` and stores it in `result`. */
size_t i, j, k;
double dir[3], pmt_dir[3], cos_theta;
double wavelength0 = 400.0;
double n_d2o = get_index_snoman_d2o(wavelength0);
for (i = 0; i < MAX_PMTS; i++) {
if (pmts[i].pmt_type != PMT_NORMAL || !ev->pmt_hits[i].hit) continue;
SUB(pmt_dir,pmts[i].pos,pos);
normalize(pmt_dir);
for (j = 0; j < n; j++) {
for (k = 0; k < m; k++) {
double r = 1+x[j]*x[j]+y[k]*y[k];
dir[0] = 2*x[j]/r;
dir[1] = 2*y[k]/r;
dir[2] = (-1+x[j]*x[j]+y[k]*y[k])/r;
cos_theta = DOT(pmt_dir,dir);
result[j*m + k] += ev->pmt_hits[i].qhs*exp(-fabs(cos_theta-1.0/n_d2o)/0.1);
}
}
}
}
void find_peaks(event *ev, double *pos, size_t n, size_t m, double *peak_theta, double *peak_phi, size_t *npeaks, size_t max_peaks, double threshold)
{
size_t i;
double *x = calloc(n,sizeof(double));
double *y = calloc(m,sizeof(double));
double *result = calloc(n*m,sizeof(double));
for (i = 0; i < n; i++) {
x[i] = -10 + 20.0*i/(n-1);
}
for (i = 0; i < m; i++) {
y[i] = -10 + 20.0*i/(m-1);
}
get_hough_transform(ev,pos,x,y,n,m,result);
size_t *imax = calloc(max_peaks,sizeof(size_t));
size_t *jmax = calloc(max_peaks,sizeof(size_t));
find_peaks_array(result,n,m,imax,jmax,npeaks,max_peaks,threshold);
for (i = 0; i < *npeaks; i++) {
double R, theta;
R = sqrt(x[imax[i]]*x[imax[i]]+y[jmax[i]]*y[jmax[i]]);
theta = atan2(y[jmax[i]],x[imax[i]]);
peak_theta[i] = 2*atan(1/R);
peak_phi[i] = theta;
}
free(imax);
free(jmax);
free(x);
free(y);
free(result);
}
|