1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
|
/* Copyright (c) 2019, Anthony Latorre <tlatorre at uchicago>
*
* This program is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option)
* any later version.
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <https://www.gnu.org/licenses/>.
*/
#include <stdio.h>
#include <gsl/gsl_spline.h>
#include <stdlib.h> /* for size_t, strtod() */
#include <errno.h> /* for errno */
#include <string.h> /* for strerror(), strtok() */
#include "sno.h"
#include "misc.h"
static double *x, *dEdx_rad, *dEdx;
static size_t size;
static gsl_interp_accel *acc_dEdx_rad;
static gsl_spline *spline_dEdx_rad;
static gsl_interp_accel *acc_dEdx;
static gsl_spline *spline_dEdx;
static int init()
{
int i, j;
char line[256];
char *str;
double value;
int n;
FILE *f = fopen("e_water_liquid.txt", "r");
if (!f) {
fprintf(stderr, "failed to open e_water_liquid.txt: %s\n", strerror(errno));
return -1;
}
i = 0;
n = 0;
/* For the first pass, we just count how many values there are. */
while (fgets(line, sizeof(line), f)) {
size_t len = strlen(line);
if (len && (line[len-1] != '\n')) {
fprintf(stderr, "got incomplete line on line %i: '%s'\n", i, line);
goto err;
}
i += 1;
/* Skip the first 8 lines since it's just a header. */
if (i <= 8) continue;
if (!len) continue;
else if (line[0] == '#') continue;
str = strtok(line," \n");
while (str) {
value = strtod(str, NULL);
str = strtok(NULL," \n");
}
n += 1;
}
x = malloc(sizeof(double)*n);
dEdx_rad = malloc(sizeof(double)*n);
dEdx = malloc(sizeof(double)*n);
size = n;
i = 0;
n = 0;
/* Now, we actually store the values. */
rewind(f);
while (fgets(line, sizeof(line), f)) {
size_t len = strlen(line);
if (len && (line[len-1] != '\n')) {
fprintf(stderr, "got incomplete line on line %i: '%s'\n", i, line);
goto err;
}
i += 1;
/* Skip the first 8 lines since it's just a header. */
if (i <= 8) continue;
if (!len) continue;
else if (line[0] == '#') continue;
str = strtok(line," \n");
j = 0;
while (str) {
value = strtod(str, NULL);
switch (j) {
case 0:
x[n] = value;
break;
case 2:
dEdx_rad[n] = value;
break;
case 3:
dEdx[n] = value;
break;
}
j += 1;
str = strtok(NULL," \n");
}
n += 1;
}
fclose(f);
acc_dEdx_rad = gsl_interp_accel_alloc();
spline_dEdx_rad = gsl_spline_alloc(gsl_interp_linear, size);
gsl_spline_init(spline_dEdx_rad, x, dEdx_rad, size);
acc_dEdx = gsl_interp_accel_alloc();
spline_dEdx = gsl_spline_alloc(gsl_interp_linear, size);
gsl_spline_init(spline_dEdx, x, dEdx, size);
return 0;
err:
fclose(f);
return -1;
}
/* Returns the approximate dE/dx for a electron in water with kinetic energy
* `T`. If `T` is outside the bounds of the range table, extrapolate linearly
* using the last two points.
*
* `T` should be in MeV and `rho` in g/cm^3.
*
* Return value is in MeV/cm.
*
* See http://pdg.lbl.gov/2018/AtomicNuclearProperties/adndt.pdf. */
double electron_get_dEdx(double T, double rho)
{
if (T < spline_dEdx->x[0]) {
return spline_dEdx->y[0];
} else if (T < spline_dEdx->x[size-1]) {
return gsl_spline_eval(spline_dEdx, T, acc_dEdx)*rho;
}
/* We extrapolate using the last two points. */
return spline_dEdx->y[size-1] + (spline_dEdx->y[size-1]-spline_dEdx->y[size-2])*(T-spline_dEdx->x[size-1])/(spline_dEdx->x[size-1]-spline_dEdx->x[size-2]);
}
/* Returns the approximate radiative dE/dx for a electron in water with kinetic
* energy `T`. If `T` is outside the bounds of the range table, extrapolate
* linearly using the last two points.
*
* `T` should be in MeV and `rho` in g/cm^3.
*
* Return value is in MeV/cm.
*
* See http://pdg.lbl.gov/2018/AtomicNuclearProperties/adndt.pdf. */
double electron_get_dEdx_rad(double T, double rho)
{
if (T < spline_dEdx_rad->x[0]) {
return spline_dEdx_rad->y[0];
} else if (T < spline_dEdx_rad->x[size-1]) {
return gsl_spline_eval(spline_dEdx_rad, T, acc_dEdx_rad)*rho;
}
/* We extrapolate using the last two points. */
return spline_dEdx_rad->y[size-1] + (spline_dEdx_rad->y[size-1]-spline_dEdx_rad->y[size-2])*(T-spline_dEdx_rad->x[size-1])/(spline_dEdx_rad->x[size-1]-spline_dEdx_rad->x[size-2]);
}
double electron_get_range(double T0)
{
double T, dx, range;
T = T0;
dx = 1e-5;
range = 0.0;
while (T > 0) {
double dEdx2 = electron_get_dEdx(T, WATER_DENSITY);
T -= dEdx2*dx;
range += dx;
}
return range;
}
int main(int argc, char **argv)
{
int i;
double T0;
double Ts[18] = {
2.000E+04,
3.000E+04,
4.000E+04,
5.000E+04,
6.000E+04,
7.000E+04,
8.000E+04,
9.000E+04,
1.000E+05,
2.000E+05,
3.000E+05,
4.000E+05,
5.000E+05,
6.000E+05,
7.000E+05,
8.000E+05,
9.000E+05,
1.000E+06};
init();
for (i = 0; i < LEN(Ts); i++) {
T0 = Ts[i];
printf("%.3E - %.3E %.3E %.3E - -\n", T0, electron_get_dEdx_rad(T0,WATER_DENSITY), electron_get_dEdx(T0,WATER_DENSITY), electron_get_range(T0));
}
return 0;
}
|