/* Copyright (c) 2019, Anthony Latorre <tlatorre at uchicago>
*
* This program is free software: you can redistribute it and/or modify it
* under the terms of the GNU General Public License as published by the Free
* Software Foundation, either version 3 of the License, or (at your option)
* any later version.
* This program is distributed in the hope that it will be useful, but WITHOUT
* ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
* FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
* more details.
* You should have received a copy of the GNU General Public License along with
* this program. If not, see <https://www.gnu.org/licenses/>.
*/
#include <stdio.h>
#include <gsl/gsl_integration.h>
#include <math.h> /* For M_PI */
/* Mass of dark matter particle (MeV). */
double mass = 1000.0;
/* Decay length of mediator V (in mm). */
double decay_length = 1000e9;
/* Cross section for dark matter interaction (in mm^2). */
double dm_cross_section = 1e-30;
/* Approximate dark matter density in MeV/mm^3. From Tom Caldwell's thesis. */
double dm_density = 400e3;
/* Approximate dark matter velocity in mm/s. The true distribution is expected
* to be a Maxwell Boltzmann distribution which is modulated annually by the
* earth's rotation around the sun, but we just assume a single constant
* velocity here. From Tom Caldwell's thesis page 26. */
double dm_velocity = 244e6;
/* Number density of scatterers in the Earth.
*
* FIXME: Currently just set to the number density of atoms in water. Need to
* update this for rock, and in fact this will change near the detector since
* there is water outside the AV. */
double number_density = 30e18; /* In 1/mm^3 */
/* From Google maps. Probably not very accurate, but should be good enough for
* this calculation. */
double latitude = 46.471857;
double longitude = -81.186755;
/* Radius of the earth in mm. */
double radius_earth = 6.371e9;
/* Depth of the SNO detector in mm. Don't be fooled by all the digits. I just
* converted 6800 feet -> mm. */
double sno_depth = 2072640;
/* Fiducial volume in mm. */
double radius_fiducial = 5000;
/* Cartesian coordinates of SNO in earth frame. They need to be global since
* they are used in some functions. */
double x_sno[3];
double epsabs = 1e-1;
double epsrel = 1e-1;
double deg2rad(double deg)
{
return deg*M_PI/180.0;
}
double rad2deg(double rad)
{
return rad*180.0/M_PI;
}
/* Convert spherical coordinates to cartesian coordinates.
*
* See https://en.wikipedia.org/wiki/Spherical_coordinate_system. */
void sphere2cartesian(double r, double theta, double phi, double *x, double *y, double *z)
{
*x = r*sin(theta)*cos(phi);
*y = r*sin(theta)*sin(phi);
*z = r*cos(theta);
}
/* Convert cartesian coordinates to spherical coordinates.
*
* See https://en.wikipedia.org/wiki/Spherical_coordinate_system. */
void cartesian2sphere(double x, double y, double z, double *r, double *theta, double *phi)
{
*r = sqrt(x*x + y*y + z*z);
*theta = acos(z/(*r));
*phi = atan2(y,x);
}
void cross(double *a, double *b, double *c)
{
c[0] = a[1]*b[2] - a[2]*b[1];
c[1] = a[2]*b[0] - a[0]*b[2];
c[2] = a[0]*b[1] - a[1]*b[0];
}
double dot(double *a, double *b)
{
return a[0]*b[0] + a[1]*b[1] + a[2]*b[2];
}
double norm(double *a)
{
return sqrt(dot(a,a));
}
void normalize(double *a)
{
double n = norm(a);
a[0] /= n;
a[1] /= n;
a[2] /= n;
}
/* Rotate a vector x around the vector dir by an angle theta. */
void rotate(double *result, double *x, double *dir, double theta)
{
double a = dot(dir,x);
double b[3];
double sin_theta = sin(theta);
double cos_theta = cos(theta);
/* Make sure the direction vector is normalized. */
normalize(dir);
cross(x,dir,b);
result[0] = x[0]*cos_theta + dir[0]*a*(1-cos_theta) + b[0]*sin_theta;
result[1] = x[1]*cos_theta + dir[1]*a*(1-cos_theta) + b[1]*sin_theta;
result[2] = x[2]*cos_theta + dir[2]*a*(1-cos_theta) + b[2]*sin_theta;
}
/* Rotate a vector in earth centered coordinates to SNO coordinates (doesn't do
* the translation). */
void rotate_earth_to_sno(double *x_earth, double *x_sno)
{
double dir[3];
double z[3] = {0,0,1};
cross(x_sno, z, dir);
/* Normalize. */
normalize(dir);
double theta = acos(dot(x_sno,z)/norm(x_sno));
rotate(x_sno, x_earth, dir, theta);
}
/* Integral over phi. */
double f3(double phi, void *params)
{
double result, error;
gsl_function F;
double *data = (double *) params;
data[5] = phi;
double x[3];
double r[3];
double distance;
/* Compute cartesian position in local SNO coordinates. */
sphere2cartesian(data[3], data[4], data[5], &x[0], &x[1], &x[2]);
/* Cartesian coordinates of gamma production offset in earth centered
* coordinates .*/
double *gamma_offset = data+6;
/* Vector distance between integration in local coordinates and gamma
* production point .*/
r[0] = x_sno[0] + x[0] - gamma_offset[0];
r[1] = x_sno[1] + x[1] - gamma_offset[1];
r[2] = x_sno[2] + x[2] - gamma_offset[2];
distance = norm(r);
return exp(-distance/decay_length)/(4*M_PI*distance*distance*decay_length)*data[3]*data[3]*sin(data[4]);
}
/* Integral over theta. */
double f2(double theta, void *params)
{
double result, error;
gsl_function F;
double *data = (double *) params;
data[4] = theta;
gsl_integration_workspace *w = gsl_integration_workspace_alloc(1000);
F.function = &f3;
F.params = params;
gsl_integration_qags(&F, 0, 2*M_PI, epsabs, epsrel, 1000, w, &result, &error);
gsl_integration_workspace_free(w);
return result;
}
/* Integral over r. */
double f1(double r, void *params)
{
double result, error;
gsl_function F;
double *data = (double *) params;
data[3] = r;
gsl_integration_workspace *w = gsl_integration_workspace_alloc(1000);
F.function = &f2;
F.params = params;
gsl_integration_qags(&F, 0, M_PI, epsabs, epsrel, 1000, w, &result, &error);
gsl_integration_workspace_free(w);
return result;
}
double f4_earth(double phi_earth, void *params)
{
double result, error;
gsl_function F;
double *data = (double *) params;
data[2] = phi_earth;
double gamma_offset[3];
/* Compute the cartesian coordinates of the gamma production point in the
* earth centered coordinates. */
sphere2cartesian(data[0], data[1], data[2], &data[6], &data[7], &data[8]);
gsl_integration_workspace *w = gsl_integration_workspace_alloc(1000);
F.function = &f1;
F.params = params;
gsl_integration_qags(&F, 0, radius_fiducial, epsabs, epsrel, 1000, w, &result, &error);
gsl_integration_workspace_free(w);
/* For now we assume the event rate is constant throughout the earth, so we
* are implicitly assuming that the cross section is pretty small. */
double flux = dm_velocity*dm_density/mass;
return dm_cross_section*number_density*flux*result*data[0]*data[0]*sin(data[1]);
}
double f3_earth(double theta_earth, void *params)
{
double result, error;
gsl_function F;
double *data = (double *) params;
data[1] = theta_earth;
gsl_integration_workspace *w = gsl_integration_workspace_alloc(1000);
F.function = &f4_earth;
F.params = params;
gsl_integration_qags(&F, 0, 2*M_PI, epsabs, epsrel, 1000, w, &result, &error);
gsl_integration_workspace_free(w);
return result;
}
double f2_earth(double r_earth, void *params)
{
double result, error;
double data[9];
gsl_function F;
data[0] = r_earth;
gsl_integration_workspace *w = gsl_integration_workspace_alloc(1000);
F.function = &f3_earth;
F.params = (void *) data;
gsl_integration_qags(&F, 0, M_PI, epsabs, epsrel, 1000, w, &result, &error);
gsl_integration_workspace_free(w);
return result;
}
/* Returns the event rate in SNO for a self-destructing dark matter particle
* with a mass of dm_mass, a dark photon decay length of gamma_length, and a
* cross section of cs (in mm^2). */
double get_event_rate(double dm_mass, double gamma_length, double cs)
{
double result, error;
gsl_function F;
gsl_integration_workspace *w = gsl_integration_workspace_alloc(1000);
F.function = &f2_earth;
F.params = NULL;
/* For now we just use global variables. */
mass = dm_mass;
decay_length = gamma_length;
dm_cross_section = cs;
gsl_integration_qags(&F, 0, radius_earth, epsabs, epsrel, 1000, w, &result, &error);
gsl_integration_workspace_free(w);
return result;
}
int main(int argc, char **argv)
{
/* Spherical angles for the SNO detector in the earth frame which has z
* along the north and south poles and the x axis passing through Greenwich.
* Should double check this. */
double sno_theta = deg2rad(latitude + 90.0);
double sno_phi = deg2rad(longitude);
sphere2cartesian(radius_earth - sno_depth, sno_theta, sno_phi, x_sno, x_sno+1, x_sno+2);
/* Calculate the event rate for a standard DM candidate with a mass of 1
* GeV, and a mediator decay length of 1 m. */
printf("event rate = %.18e Hz\n", get_event_rate(1000, 1000e9, 1e-30));
return 0;
}