aboutsummaryrefslogtreecommitdiff
path: root/sno_charge.c
blob: faf7826dc6bf8b6ccbdfee18f0ddca3d877c479b (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
#include "sno_charge.h"
#include <gsl/gsl_sf_gamma.h>
#include <math.h>
#include <gsl/gsl_spline.h>
#include <gsl/gsl_integration.h>
#include <unistd.h>
#include <stdio.h>
#include "misc.h"

#define MAX_PE 10

double qlo = -1.0;
double qhi = 100.0;
size_t nq = 10000;
static gsl_spline *splines[MAX_PE];
static gsl_interp_accel *acc;

static double qmean, qstd;

static double pmiss[MAX_PE];

static int initialized = 0;

/* Parameters for the single PE charge distribution. These numbers come from
 * mc_generator.dat in SNOMAN 5.0294. */

/* Polya parameter. */
static double M = 8.1497;
/* Amplitude of 1st Polya. */
static double NG1 = 0.27235e-1;
/* Slope of Polya Gain 1 vs. high-half point. */
static double SLPG1 = 0.71726;
/* Offset of Polya Gain 1 vs. high-half point. */
static double OFFG1 = 1.2525;
/* Amplitude of 2nd Polya. */
static double NG2 = 0.7944e-3;
/* Slope of Polya Gain 2 vs. high-half point. */
static double SLPG2 = 0.71428;
/* Offset of Polya Gain 2 vs. high-half point. */
static double OFFG2 = 118.21;
/* Amplitude of exponential noise peak. */
static double NEXP = 0.81228e-1;
/* Falloff parameter of exponential noise peak. */
static double Q0 = 20.116;
/* Mean of high-half point distribution. */
static double MEAN_HIPT = 46.0;
/* Width of noise before discriminator in ADC counts. */
static double QNOISE = 0.61;
/* Width of smearing after discriminator in ADC counts. */
static double QSMEAR_ADC = 3.61;
/* Mean of simulated threshold distribution. */
static double MEAN_THRESH = 8.5;

double spe_pol2exp(double q)
{
    /* Returns the probability distribution to get a charge `q` on a PMT with a
     * high-half point `hhp` from a single photoelectron.
     *
     * We assume that the charge has been normalized by the high-half point.
     *
     * This function models the single PE charge distribution as a double Polya
     * with an exponential noise term. */
    double qpe1, qpe2, funpol1, funpol2, gmratio, g1, g2, norm, hhp;

    if (q < 0) return 0.0;

    hhp = MEAN_HIPT;

    q *= MEAN_HIPT;

    g1 = OFFG1 + SLPG1*hhp;
    g2 = OFFG2 + SLPG2*hhp;

    qpe1 = q/g1;
    qpe2 = q/g2;

    funpol1 = pow(M*qpe1,M-1)*exp(-M*qpe1);
    funpol2 = pow(M*qpe2,M-1)*exp(-M*qpe2);

    gmratio = M/gsl_sf_gamma(M);

    norm = (NG1*g1 + NG2*g2 + NEXP*Q0)/MEAN_HIPT;

    return (gmratio*(NG1*funpol1 + NG2*funpol2) + NEXP*exp(-q/Q0))/norm;
}

double pq(double q, int n)
{
    if (!initialized) {
        fprintf(stderr, "charge interpolation hasn't been initialized!\n");
        exit(1);
    }

    if (n > MAX_PE) {
        /* Assume the distribution is gaussian by the central limit theorem. */
        return norm(q,n*qmean,qstd);
    }

    if (q < qlo || q > qhi) return 0.0;

    return gsl_spline_eval(splines[n-1], q, acc);
}

double get_pmiss(int n)
{
    if (!initialized) {
        fprintf(stderr, "charge interpolation hasn't been initialized!\n");
        exit(1);
    }

    if (n == 0) {
        return 1.0;
    } else if (n > MAX_PE) {
        /* Assume the distribution is gaussian by the central limit theorem. */
        return 0.0;
    }

    return pmiss[n-1];
}

static double gsl_charge(double x, void *params)
{
    double q = ((double *) params)[0];
    int n = (int) ((double *) params)[1];

    return pq(x,1)*pq(q-x,n-1);
}

static double gsl_charge2(double x, void *params)
{
    int n = (int) ((double *) params)[0];

    return pq(x,n);
}

static double gsl_smear(double x, void *params)
{
    double q = ((double *) params)[0];
    int n = (int) ((double *) params)[1];

    return pq(x,n)*norm(q-x,0.0,QSMEAR_ADC/MEAN_HIPT);
}

static double sno_charge1(double q, void *params)
{
    return q*spe_pol2exp(q);
}

static double sno_charge2(double q, void *params)
{
    return q*q*spe_pol2exp(q);
}

void init_charge(void)
{
    int i, j;
    gsl_integration_cquad_workspace *w;
    double result, error;
    size_t nevals;
    double *x, *y;
    double params[2];
    gsl_function F;
    double q, q2;

    initialized = 1;

    x = malloc(nq*sizeof(double));
    y = malloc(nq*sizeof(double));

    for (i = 0; i < nq; i++) {
        x[i] = qlo + (qhi-qlo)*i/(nq-1);
    }

    w = gsl_integration_cquad_workspace_alloc(100);

    F.function = &sno_charge1;
    F.params = NULL;

    gsl_integration_cquad(&F, 0, qhi, 0, 1e-9, w, &result, &error, &nevals);
    q = result;

    F.function = &sno_charge2;
    F.params = NULL;

    gsl_integration_cquad(&F, 0, qhi, 0, 1e-9, w, &result, &error, &nevals);
    q2 = result;

    qmean = q;
    qstd = sqrt(q2 - q*q);

    F.function = &gsl_charge;
    F.params = &params;

    acc = gsl_interp_accel_alloc();

    splines[0] = gsl_spline_alloc(gsl_interp_linear,nq);
    for (j = 0; j < nq; j++) {
        y[j] = spe_pol2exp(x[j]);
    }
    gsl_spline_init(splines[0],x,y,nq);

    for (i = 2; i <= MAX_PE; i++) {
        splines[i-1] = gsl_spline_alloc(gsl_interp_linear,nq);
        for (j = 0; j < nq; j++) {
            params[0] = x[j];
            params[1] = i;
            if (x[j] < 0) {
                y[j] = 0.0;
                continue;
            }
            gsl_integration_cquad(&F, 0, x[j], 0, 1e-4, w, &result, &error, &nevals);
            y[j] = result;
        }
        gsl_spline_init(splines[i-1],x,y,nq);
    }

    /* Integrate the charge distribution before smearing to figure out the
     * probability that the discriminator didn't fire.
     *
     * Note: Technically there is some smearing before the discriminator, but
     * it is very small, so we ignore it. */
    F.function = &gsl_charge2;
    for (i = 1; i <= MAX_PE; i++) {
        params[0] = i;
        gsl_integration_cquad(&F, 0, MEAN_THRESH/MEAN_HIPT, 0, 1e-9, w, &result, &error, &nevals);
        pmiss[i-1] = result;
    }

    F.function = &gsl_smear;

    for (i = 1; i <= MAX_PE; i++) {
        for (j = 0; j < nq; j++) {
            params[0] = x[j];
            params[1] = i;
            gsl_integration_cquad(&F, x[j]-QSMEAR_ADC*10/MEAN_HIPT, x[j]+QSMEAR_ADC*10/MEAN_HIPT, 0, 1e-4, w, &result, &error, &nevals);
            y[j] = result;
        }
        gsl_spline_free(splines[i-1]);
        splines[i-1] = gsl_spline_alloc(gsl_interp_linear,nq);
        gsl_spline_init(splines[i-1],x,y,nq);
    }

    gsl_integration_cquad_workspace_free(w);
    free(x);
    free(y);
}