aboutsummaryrefslogtreecommitdiff
path: root/optics.c
blob: 23e043deb4178eb6d9fcad2d4de7260d78b934fa (plain)
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
#include <math.h>
#include "optics.h"

/* From Table 4 in the paper. */
static double A0 = 0.243905091;
static double A1 = 9.53518094e-3;
static double A2 = -3.64358110e-3;
static double A3 = 2.65666426e-4;
static double A4 = 1.59189325e-3;
static double A5 = 2.45733798e-3;
static double A6 = 0.897478251;
static double A7 = -1.63066183e-2;
static double UV = 0.2292020;
static double IR = 5.432937;

double get_index(double p, double wavelength, double T)
{
    /* Returns the index of refraction of pure water for a given density,
     * wavelength, and temperature. The density should be in units of g/cm^3,
     * the wavelength in nm, and the temperature in Celsius.
     *
     * See "Refractive Index of Water and Steam as a function of Wavelength,
     * Temperature, and Density" by Schiebener et al. 1990. */
    /* normalize the temperature and pressure */
    wavelength = wavelength/589.0;
    T = (T+273.15)/273.15;

    /* first we compute the right hand side of Equation 7 */
    double c = A0 + A1*p + A2*T + A3*pow(wavelength,2)*T + A4/pow(wavelength,2) + A5/(pow(wavelength,2)-pow(UV,2)) + A6/(pow(wavelength,2)-pow(IR,2)) + A7*pow(p,2);
    c *= p;

    return sqrt((2*c+1)/(1-c));
}