aboutsummaryrefslogtreecommitdiff
path: root/macros
ModeNameSize
-rw-r--r--MC_Atm_Nu_No_Osc_Snoman_Genie10000_X_1_run_mc_atm_nu_genie.cmd891logplain
-rw-r--r--activate_atmospherics.cmd957logplain
-rw-r--r--mc_run_10000_macro.cmd1269logplain
-rwxr-xr-xsnogen2155logplain
66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163
#!/usr/bin/env python
# Copyright (c) 2019, Anthony Latorre <tlatorre at uchicago>
#
# This program is free software: you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the Free
# Software Foundation, either version 3 of the License, or (at your option)
# any later version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
# more details.
#
# You should have received a copy of the GNU General Public License along with
# this program. If not, see <https://www.gnu.org/licenses/>.
"""
Script to plot the fit results for stopping muons and Michels. To run it just
run:

    $ ./plot-muon [list of fit results]

Currently it will plot energy distributions for external muons, stopping muons,
and michel electrons.
"""
from __future__ import print_function, division
import numpy as np
from scipy.stats import iqr, poisson
from scipy.stats import iqr, norm, beta
from sddm.stats import *

particle_id = {20: 'e', 22: 'u'}

def print_particle_probs(data):
    n = [len(data[data.id == id]) for id in (20,22,2020,2022,2222)]

    alpha = np.ones_like(n) + n

    mode = dirichlet_mode(alpha)
    std = np.sqrt(dirichlet.var(alpha))

    for i, id in enumerate((20,22,2020,2022,2222)):
        particle_id_str = ''.join([particle_id[int(''.join(x))] for x in grouper(str(id),2)])
        print("P(%s) = %.2f +/- %.2f" % (particle_id_str,mode[i]*100,std[i]*100))

if __name__ == '__main__':
    import argparse
    import numpy as np
    import pandas as pd
    import sys
    import h5py
    from sddm.plot_energy import *
    from sddm.plot import *
    from sddm import setup_matplotlib

    parser = argparse.ArgumentParser("plot fit results")
    parser.add_argument("filenames", nargs='+', help="input files")
    parser.add_argument("--save", action='store_true', default=False, help="save corner plots for backgrounds")
    parser.add_argument("--mc", nargs='+', required=True, help="atmospheric MC files")
    parser.add_argument("--nhit-thresh", type=int, default=None, help="nhit threshold to apply to events before processing (should only be used for testing to speed things up)")
    args = parser.parse_args()

    setup_matplotlib(args.save)

    import matplotlib.pyplot as plt

    # Loop over runs to prevent using too much memory
    evs = []
    rhdr = pd.concat([read_hdf(filename, "rhdr").assign(filename=filename) for filename in args.filenames],ignore_index=True)
    for run, df in rhdr.groupby('run'):
        evs.append(get_events(df.filename.values, merge_fits=True, nhit_thresh=args.nhit_thresh))
    ev = pd.concat(evs)
    ev_mc = get_events(args.mc, merge_fits=True)

    # Drop events without fits
    ev = ev[~np.isnan(ev.fmin)]
    ev_mc = ev_mc[~np.isnan(ev_mc.fmin)]

    ev = ev.reset_index()
    ev_mc = ev_mc.reset_index()

    # Set all prompt events in the MC to be muons
    ev_mc.loc[ev_mc.prompt & ev_mc.filename.str.contains("cosmic"),'muon'] = True

    # First, do basic data cleaning which is done for all events.
    ev = ev[ev.signal | ev.muon]
    ev_mc = ev_mc[ev_mc.signal | ev_mc.muon]

    # 00-orphan cut
    ev = ev[(ev.gtid & 0xff) != 0]
    ev_mc = ev_mc[(ev_mc.gtid & 0xff) != 0]

    # Now, we select events tagged by the muon tag which should tag only
    # external muons. We keep the sample of muons since it's needed later to
    # identify Michel electrons and to apply the muon follower cut
    muons = ev[ev.muon]
    muons_mc = ev_mc[ev_mc.muon]

    # Try to identify Michel electrons. Currently, the event selection is based
    # on Richie's thesis. Here, we do the following:
    #
    # 1. Apply more data cleaning cuts to potential Michel electrons
    # 2. Nhit >= 100
    # 3. It must be > 800 ns and less than 20 microseconds from a prompt event
    #    or a muon
    michel = ev[ev.michel]
    michel_mc = ev_mc[ev_mc.michel]

    # remove events 200 microseconds after a muon
    ev = ev.groupby('run',group_keys=False).apply(muon_follower_cut)

    ev = ev[ev.psi < 6]
    ev_mc = ev_mc[ev_mc.psi < 6]

    handles = [Line2D([0], [0], color='C0'),
               Line2D([0], [0], color='C1')]
    labels = ('Data','Monte Carlo')

    # For the Michel energy plot, we only look at events where the
    # corresponding muon had less than 2500 nhit.  The reason for only looking
    # at Michel electrons from muons with less than 2500 nhit is because there
    # is significant ringing and afterpulsing after a large muon which can
    # cause the reconstruction to overestimate the energy.
    michel_low_nhit = michel[michel.muon_gtid.isin(ev.gtid.values) & (michel.muon_nhit < 2500)]
    michel_low_nhit_mc = michel_mc[michel_mc.muon_gtid.isin(ev_mc.gtid.values) & (michel_mc.muon_nhit < 2500)]

    print("Particle ID probability for Michel electrons:")
    print("Data")
    print_particle_probs(michel_low_nhit)
    print("Monte Carlo")
    print_particle_probs(michel_low_nhit_mc)

    fig = plt.figure()
    plot_hist2_data_mc(michel_low_nhit,michel_low_nhit_mc)
    despine(fig,trim=True)
    fig.legend(handles,labels,loc='upper right')
    if args.save:
        plt.savefig("michel_electrons.pdf")
        plt.savefig("michel_electrons.eps")
    else:
        plt.suptitle("Michel Electrons")

    fig = plt.figure()
    bins = np.linspace(0,100,41)
    plt.hist(michel_low_nhit.ke.values, bins=bins, histtype='step', color='C0', label="Data")
    plt.hist(michel_low_nhit_mc.ke.values, weights=np.tile(len(michel_low_nhit)/len(michel_low_nhit_mc),len(michel_low_nhit_mc.ke.values)), bins=bins, histtype='step', color='C1', label="Monte Carlo")
    hist = np.histogram(michel_low_nhit.ke.values,bins=bins)[0]
    hist_mc = np.histogram(michel_low_nhit_mc.ke.values,bins=bins)[0]
    if hist_mc.sum() > 0:
        norm = hist.sum()/hist_mc.sum()
    else:
        norm = 1.0
    p = get_multinomial_prob(hist,hist_mc,norm)
    plt.text(0.95,0.95,"p = %.2f" % p,horizontalalignment='right',verticalalignment='top',transform=plt.gca().transAxes)
    despine(fig,trim=True)
    plt.xlabel("Energy (MeV)")
    plt.tight_layout()
    plt.legend()
    if args.save:
        plt.savefig("michel_electrons_ke.pdf")
        plt.savefig("michel_electrons_ke.eps")
    else:
        plt.title("Michel Electrons")
    plt.show()