aboutsummaryrefslogtreecommitdiff
path: root/src/test-find-peaks.c
AgeCommit message (Expand)Author
2019-06-15update test-find-peaks to work with SNOCR filestlatorre
2019-06-06add --gtid command line argument to test-find-peakstlatorre
2019-06-02update find_peaks() to only return unique peakstlatorre
2019-05-23add zdab-cattlatorre
2019-03-31update test-find-peaks to plot cerenkov ringstlatorre
2019-03-16add GPLv3 licensetlatorre
2019-03-07update code to allow you to run the fit outside of the src directorytlatorre
2019-01-17update test-find-peaks to test the first eventtlatorre
2019-01-15update zebra library to be able to use linkstlatorre
2019-01-10update find_peaks algorithmtlatorre
2018-12-11add a function to find peaks using a Hough transformtlatorre
href='#n98'>98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878
#!/usr/bin/env python
# Copyright (c) 2019, Anthony Latorre <tlatorre at uchicago>
#
# This program is free software: you can redistribute it and/or modify it
# under the terms of the GNU General Public License as published by the Free
# Software Foundation, either version 3 of the License, or (at your option)
# any later version.
#
# This program is distributed in the hope that it will be useful, but WITHOUT
# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
# more details.
#
# You should have received a copy of the GNU General Public License along with
# this program. If not, see <https://www.gnu.org/licenses/>.
"""
Script to do final dark matter search analysis. To run it just run:

    $ ./dm-search [list of data fit results] --mc [list of atmospheric MC files] --muon-mc [list of muon MC files] --steps [steps]

After running you will get a plot showing the limits for back to back dark
matter at a range of energies.
"""
from __future__ import print_function, division
import numpy as np
from scipy.stats import iqr, poisson
from matplotlib.lines import Line2D
from scipy.stats import iqr, norm, beta, percentileofscore
from scipy.special import spence
from sddm.stats import *
from sddm.dc import estimate_errors, EPSILON, truncnorm_scaled
import emcee
from sddm import printoptions
from sddm.utils import fast_cdf, correct_energy_bias
from scipy.integrate import quad
from sddm.dm import *
from sddm import SNOMAN_MASS, AV_RADIUS
import nlopt
from itertools import chain

# Likelihood Fit Parameters
# 0 - Atmospheric Neutrino Flux Scale
# 1 - Electron energy bias
# 2 - Electron energy resolution
# 3 - Muon energy bias
# 4 - Muon energy resolution
# 5 - External Muon scale
# 6 - Dark Matter Scale

# Number of events to use in the dark matter Monte Carlo histogram when fitting
# Ideally this would be as big as possible, but the bigger it is, the more time
# the fit takes.
DM_SAMPLES = 10000

DM_MASSES = {2020: np.logspace(np.log10(22),np.log10(1e3),101),
             2222: np.logspace(np.log10(318),np.log10(1e3),101)}

DISCOVERY_P_VALUE = 0.05

FIT_PARS = [
    'Atmospheric Neutrino Flux Scale',
    'Electron energy bias',
    'Electron energy resolution',
    'Muon energy bias',
    'Muon energy resolution',
    'External Muon scale',
    'Dark Matter Scale']

# Uncertainty on the energy scale
#
# - the muon energy scale and resolution terms come directly from measurements
#   on stopping muons, so those are known well.
# - for electrons, we only have Michel electrons at the low end of our energy
#   range, and therefore we don't really have any good way of constraining the
#   energy scale or resolution. However, if we assume that the ~7% energy bias
#   in the muons is from the single PE distribution (it seems likely to me that
#   that is a major part of the bias), then the energy scale should be roughly
#   the same. Since the Michel electron distributions are consistent, we leave
#   the mean value at 0, but to be conservative, we set the error to 10%.
# - The energy resolution for muons was pretty much spot on, and so we expect
#   the same from electrons. In addition, the Michel spectrum is consistent so
#   at that energy level we don't see anything which leads us to expect a major
#   difference. To be conservative, and because I don't think it really affects
#   the analysis at all, I'll leave the uncertainty here at 10% anyways.
PRIORS = [
    1.0,   # Atmospheric Neutrino Scale
    0.015, # Electron energy scale
    0.0,   # Electron energy resolution
    0.053, # Muon energy scale
    0.0,   # Muon energy resolution
    0.0,   # Muon scale
    0.0,   # Dark Matter Scale
]

PRIOR_UNCERTAINTIES = [
    0.2,   # Atmospheric Neutrino Scale
    0.03,  # Electron energy scale
    0.05,  # Electron energy resolution
    0.01,  # Muon energy scale
    0.013, # Muon energy resolution
    10.0,  # Muon scale
    np.inf,# Dark Matter Scale
]

# Lower bounds for the fit parameters
PRIORS_LOW = [
    EPSILON,
    -10,
    EPSILON,
    -10,
    EPSILON,
    0,
    0,
]

# Upper bounds for the fit parameters
PRIORS_HIGH = [
    10,
    10,
    10,
    10,
    10,
    1e9,
    1000,
]

particle_id = {20: 'e', 22: r'\mu'}

def plot_hist2(hists, bins, color=None):
    for id in (20,22,2020,2022,2222):
        if id == 20:
            plt.subplot(2,3,1)
        elif id == 22:
            plt.subplot(2,3,2)
        elif id == 2020:
            plt.subplot(2,3,4)
        elif id == 2022:
            plt.subplot(2,3,5)
        elif id == 2222:
            plt.subplot(2,3,6)

        bincenters = (bins[id][1:] + bins[id][:-1])/2
        plt.hist(bincenters, bins=bins[id], histtype='step', weights=hists[id],color=color)
        plt.gca().set_xscale("log")
        major = np.array([10,100,1000,10000])
        minor = np.unique(list(chain(*list(range(i,i*10,i) for i in major[:-1]))))
        minor = np.setdiff1d(minor,major)
        major = major[major <= bins[id][-1]]
        minor = minor[minor <= bins[id][-1]]
        plt.gca().set_xticks(major)
        plt.gca().set_xticks(minor,minor=True)
        plt.gca().set_xlim(10,10000)
        plt.xlabel("Energy (MeV)")
        plt.title('$' + ''.join([particle_id[int(''.join(x))] for x in grouper(str(id),2)]) + '$')

    if len(hists):
        plt.tight_layout()

def get_mc_hists(data,x,bins,scale=1.0,reweight=False):
    """
    Returns the expected Monte Carlo histograms for the atmospheric neutrino
    background.

    Args:
        - data: pandas dataframe of the Monte Carlo events
        - x: fit parameters
        - bins: histogram bins
        - scale: multiply histograms by an overall scale factor

    This function does two basic things:

        1. apply the energy bias and resolution corrections
        2. histogram the results

    Returns a dictionary mapping particle id combo -> histogram.
    """
    df_dict = {}
    for id in (20,22,2020,2022,2222):
        df_dict[id] = data[data.id == id]

    return get_mc_hists_fast(df_dict,x,bins,scale,reweight)

def get_mc_hists_fast(df_dict,x,bins,scale=1.0,reweight=False):
    """
    Same as get_mc_hists() but the first argument is a dictionary mapping
    particle id -> dataframe. This is much faster than selecting the events
    from the dataframe every time.
    """
    mc_hists = {}

    for id in (20,22,2020,2022,2222):
        df = df_dict[id]

        if id == 20:
            ke = df.energy1.values*(1+x[1])
            resolution = df.energy1.values*max(EPSILON,x[2])
        elif id == 2020:
            ke = df.energy1.values*(1+x[1]) + df.energy2.values*(1+x[1])
            resolution = np.sqrt((df.energy1.values*max(EPSILON,x[2]))**2 + (df.energy2.values*max(EPSILON,x[2]))**2)
        elif id == 22:
            ke = df.energy1.values*(1+x[3])
            resolution = df.energy1.values*max(EPSILON,x[4])
        elif id == 2222:
            ke = df.energy1.values*(1+x[3]) + df.energy2.values*(1+x[3])
            resolution = np.sqrt((df.energy1.values*max(EPSILON,x[4]))**2 + (df.energy2.values*max(EPSILON,x[4]))**2)
        elif id == 2022:
            ke = df.energy1.values*(1+x[1]) + df.energy2.values*(1+x[3])
            resolution = np.sqrt((df.energy1.values*max(EPSILON,x[2]))**2 + (df.energy2.values*max(EPSILON,x[4]))**2)

        if reweight:
            cdf = fast_cdf(bins[id][:,np.newaxis],ke,resolution)*df.weight.values
        else:
            cdf = fast_cdf(bins[id][:,np.newaxis],ke,resolution)

        if 'flux_weight' in df.columns:
            cdf *= df.flux_weight.values

        mc_hists[id] = np.sum(cdf[1:] - cdf[:-1],axis=-1)
        mc_hists[id] *= scale
    return mc_hists

def get_data_hists(data,bins,scale=1.0):
    """
    Returns the data histogrammed into `bins`.
    """
    data_hists = {}
    for id in (20,22,2020,2022,2222):
        data_hists[id] = np.histogram(data[data.id == id].ke.values,bins=bins[id])[0]*scale
    return data_hists

def make_nll(dm_particle_id, dm_mass, dm_energy, data, muons, mc, atmo_scale_factor, muon_scale_factor, bins, reweight=False, print_nll=False, dm_sample=None):
    df_dict = dict(tuple(mc.groupby('id')))
    for id in (20,22,2020,2022,2222):
        if id not in df_dict:
            df_dict[id] = mc.iloc[:0]

    df_dict_muon = dict(tuple(muons.groupby('id')))
    for id in (20,22,2020,2022,2222):
        if id not in df_dict_muon:
            df_dict_muon[id] = muons.iloc[:0]

    data_hists = get_data_hists(data,bins)

    if dm_sample is None:
        dm_sample = get_dm_sample(DM_SAMPLES,dm_particle_id,dm_mass,dm_energy)

    df_dict_dm = {}
    for id in (20,22,2020,2022,2222):
        df_dict_dm[id] = dm_sample[dm_sample.id == id]

    def nll(x, grad=None):
        if (x < PRIORS_LOW).any() or (x > PRIORS_HIGH).any():
            return np.inf

        # Get the Monte Carlo histograms. We need to do this within the
        # likelihood function since we apply the energy resolution parameters
        # to the Monte Carlo.
        mc_hists = get_mc_hists_fast(df_dict,x,bins,scale=1/atmo_scale_factor,reweight=reweight)
        muon_hists = get_mc_hists_fast(df_dict_muon,x,bins,scale=1/muon_scale_factor)
        dm_hists = get_mc_hists_fast(df_dict_dm,x,bins,scale=1/len(dm_sample))

        # Calculate the negative log of the likelihood of observing the data
        # given the fit parameters

        nll = 0
        for id in data_hists:
            oi = data_hists[id]
            ei = mc_hists[id]*x[0] + muon_hists[id]*x[5] + dm_hists[id]*x[6] + EPSILON 
            N = ei.sum()
            nll -= -N - np.sum(gammaln(oi+1)) + np.sum(oi*np.log(ei))

        # Add the priors
        nll -= norm.logpdf(x[:6],PRIORS[:6],PRIOR_UNCERTAINTIES[:6]).sum()

        if print_nll:
            # Print the result
            print("nll = %.2f" % nll)

        return nll
    return nll

def do_fit(dm_particle_id,dm_mass,dm_energy,data,muon,data_mc,weights,atmo_scale_factor,muon_scale_factor,bins,steps,print_nll=False,walkers=100,thin=10,refit=True):
    """
    Run the fit and return the minimum along with samples from running an MCMC
    starting near the minimum.

    Args:
        - data: pandas dataframe representing the data to fit
        - muon: pandas dataframe representing the expected background from
                external muons
        - data_mc: pandas dataframe representing the expected background from
                   atmospheric neutrino events
        - weights: pandas dataframe with the GENIE weights
        - bins: an array of bins to use for the fit
        - steps: the number of MCMC steps to run

    Returns a tuple (xopt, samples) where samples is an array of shape (steps,
    number of parameters).
    """
    dm_sample = get_dm_sample(DM_SAMPLES,dm_particle_id,dm_mass,dm_energy)

    nll = make_nll(dm_particle_id,dm_mass,dm_energy,data,muon,data_mc,atmo_scale_factor,muon_scale_factor,bins,print_nll,dm_sample=dm_sample)

    pos = np.empty((walkers, len(PRIORS)),dtype=np.double)
    for i in range(pos.shape[0]):
        pos[i] = sample_priors()

    nwalkers, ndim = pos.shape

    # We use the KDEMove here because I think it should sample the likelihood
    # better. Because we have energy scale parameters and we are doing a binned
    # likelihood, the likelihood is discontinuous. There can also be several
    # local minima. The author of emcee recommends using the KDEMove with a lot
    # of workers to try and properly sample a multimodal distribution. In
    # addition, I've found that the autocorrelation time for the KDEMove is
    # much better than the other moves.
    sampler = emcee.EnsembleSampler(nwalkers, ndim, lambda x: -nll(x), moves=emcee.moves.KDEMove())
    with np.errstate(invalid='ignore'):
        sampler.run_mcmc(pos, steps)

    print("Mean acceptance fraction: {0:.3f}".format(np.mean(sampler.acceptance_fraction)))

    try:
        print("autocorrelation time: ", sampler.get_autocorr_time(quiet=True))
    except Exception as e:
        print(e)

    samples = sampler.get_chain(flat=True,thin=thin)

    # Now, we use nlopt to find the best set of parameters. We start at the
    # best starting point from the MCMC and then run the SBPLX routine.
    x0 = sampler.get_chain(flat=True)[sampler.get_log_prob(flat=True).argmax()]
    opt = nlopt.opt(nlopt.LN_SBPLX, len(x0))
    opt.set_min_objective(nll)
    low = np.array(PRIORS_LOW)
    high = np.array(PRIORS_HIGH)
    if refit:
        # If we are refitting, we want to do the first fit assuming no dark
        # matter to make sure we get the best GENIE systematics for the null
        # hypothesis.
        x0[6] = low[6]
        high[6] = low[6]
    opt.set_lower_bounds(low)
    opt.set_upper_bounds(high)
    opt.set_ftol_abs(1e-10)
    opt.set_initial_step([0.01]*len(x0))
    xopt = opt.optimize(x0)

    # Get the total number of "universes" simulated in the GENIE reweight tool
    nuniverses = weights['universe'].max()+1

    weights_dict = dict(tuple(weights.groupby('universe')))

    nlls = []
    for universe in range(nuniverses):
        data_mc_with_weights = pd.merge(data_mc,weights_dict[universe],how='left',on=['run','unique_id'])
        data_mc_with_weights.weight = data_mc_with_weights.weight.fillna(1.0)

        nll = make_nll(dm_particle_id,dm_mass,dm_energy,data,muon,data_mc_with_weights,atmo_scale_factor,muon_scale_factor,bins,reweight=True,print_nll=print_nll,dm_sample=dm_sample)
        nlls.append(nll(xopt))

    universe = np.argmin(nlls)

    if refit:
        data_mc_with_weights = pd.merge(data_mc,weights[weights.universe == universe],how='left',on=['run','unique_id'])
        data_mc_with_weights.weight = data_mc_with_weights.weight.fillna(1.0)

        # Create a new negative log likelihood function with the weighted Monte Carlo.
        nll = make_nll(dm_particle_id,dm_mass,dm_energy,data,muon,data_mc_with_weights,atmo_scale_factor,muon_scale_factor,bins,reweight=True,print_nll=print_nll,dm_sample=dm_sample)

        # Now, we refit with the Monte Carlo weighted by the most likely GENIE
        # systematics.
        pos = np.empty((walkers, len(PRIORS)),dtype=np.double)
        for i in range(pos.shape[0]):
            pos[i] = sample_priors()

        nwalkers, ndim = pos.shape

        # We use the KDEMove here because I think it should sample the likelihood
        # better. Because we have energy scale parameters and we are doing a binned
        # likelihood, the likelihood is discontinuous. There can also be several
        # local minima. The author of emcee recommends using the KDEMove with a lot
        # of workers to try and properly sample a multimodal distribution. In
        # addition, I've found that the autocorrelation time for the KDEMove is
        # much better than the other moves.
        sampler = emcee.EnsembleSampler(nwalkers, ndim, lambda x: -nll(x), moves=emcee.moves.KDEMove())
        with np.errstate(invalid='ignore'):
            sampler.run_mcmc(pos, steps)

        print("Mean acceptance fraction: {0:.3f}".format(np.mean(sampler.acceptance_fraction)))

        try:
            print("autocorrelation time: ", sampler.get_autocorr_time(quiet=True))
        except Exception as e:
            print(e)

        samples = sampler.get_chain(flat=True,thin=thin)

        # Now, we use nlopt to find the best set of parameters. We start at the
        # best starting point from the MCMC and then run the SBPLX routine.
        x0 = sampler.get_chain(flat=True)[sampler.get_log_prob(flat=True).argmax()]
        opt = nlopt.opt(nlopt.LN_SBPLX, len(x0))
        opt.set_min_objective(nll)
        low = np.array(PRIORS_LOW)
        high = np.array(PRIORS_HIGH)
        opt.set_lower_bounds(low)
        opt.set_upper_bounds(high)
        opt.set_ftol_abs(1e-10)
        opt.set_initial_step([0.01]*len(x0))
        xopt = opt.optimize(x0)

    return xopt, universe, samples

def sample_priors():
    """
    Returns a random sample of the fit parameters from the priors. For the
    first 6 parameters we use a truncated normal distribution, and for the last
    parameter we use a uniform distribution.
    """
    return np.concatenate((truncnorm_scaled(PRIORS_LOW[:6],PRIORS_HIGH[:6],PRIORS[:6],PRIOR_UNCERTAINTIES[:6]),[np.random.uniform(PRIORS_LOW[6],PRIORS_HIGH[6])]))

def get_dm_sample(n,dm_particle_id,dm_mass,dm_energy):
    """
    Returns a dataframe containing events from a dark matter particle.

    Args:

        - n: int
            number of events
        - dm_particle_id: int
            the particle id of the DM particle (2020 or 2222)
        - dm_energy: float
            The total kinetic energy of the DM particle
        - dm_resolution: float
            The fractional energy resolution of the dark matter particle, i.e.
            the actual energy resolution will be dm_energy*dm_resolution.
    """
    id1 = dm_particle_id//100
    id2 = dm_particle_id % 100
    m1 = SNOMAN_MASS[id1]
    m2 = SNOMAN_MASS[id2]
    energy1 = []
    data = np.empty(n,dtype=[('energy1',np.double),('energy2',np.double),('ke',np.double),('id1',np.int),('id2',np.int),('id',np.int)])
    for i, (v1, v2) in enumerate(islice(gen_decay(dm_mass,dm_energy,m1,m2),n)):
        E1 = v1[0]
        E2 = v2[0]
        T1 = E1 - m1
        T2 = E2 - m2
        data[i] = T1, T2, T1 + T2, id1, id2, dm_particle_id

    # FIXME: Get electron and muon resolution
    data['energy1'] += norm.rvs(scale=data['energy1']*0.05)
    data['energy2'] += norm.rvs(scale=data['energy2']*0.05)

    return pd.DataFrame(data)

def get_limits(dm_masses,data,muon,data_mc,atmo_scale_factor,muon_scale_factor,bins,steps,print_nll,walkers,thin):
    limits = {}
    best_fit = {}
    discovery_array = {}
    for dm_particle_id in (2020,2222):
        limits[dm_particle_id] = np.empty(len(dm_masses[dm_particle_id]))
        best_fit[dm_particle_id] = np.empty(len(dm_masses[dm_particle_id]))
        discovery_array[dm_particle_id] = np.empty(len(dm_masses[dm_particle_id]))
        for i, dm_mass in enumerate(dm_masses[dm_particle_id]):
            id1 = dm_particle_id//100
            id2 = dm_particle_id % 100
            m1 = SNOMAN_MASS[id1]
            m2 = SNOMAN_MASS[id2]
            dm_energy = dm_mass
            xopt, universe, samples = do_fit(dm_particle_id,dm_mass,dm_energy,data,muon,data_mc,weights,atmo_scale_factor,muon_scale_factor,bins,steps,print_nll,walkers,thin)

            data_mc_with_weights = pd.merge(data_mc,weights[weights.universe == universe],how='left',on=['run','unique_id'])
            data_mc_with_weights.weight = data_mc_with_weights.weight.fillna(1.0)

            limit = np.percentile(samples[:,6],90)
            limits[dm_particle_id][i] = limit

            # Here, to determine if there is a discovery we make an approximate
            # calculation of the number of events which would be significant.
            #
            # We expect the likelihood to be approximately that of a Poisson
            # distribution with n background events and we are searching for a
            # signal s. n is constrained by the rest of the histograms, and so
            # we can treat is as being approximately fixed. In this case, the
            # likelihood looks approximately like:
            #
            #     P(s) = e^(-(s+n))(s+n)**i/i!
            #
            # Where i is the actual number of events. Under the null hypothesis
            # (i.e. no dark matter), we expect i to be Poisson distributed with
            # mean n. Therefore s should have the same distribution but offset
            # by n. Therefore, to determine the threshold, we simply look for
            # the threshold we expect in n and then subtract n.
            dm_kinetic_energy = dm_energy - m1 - m2

            dm_sample = get_dm_sample(DM_SAMPLES,dm_particle_id,dm_mass,dm_energy)

            # To calculate `n` we approximately want the number of events in
            # the bin which most of the dark matter events will fall. However,
            # to smoothly transition between bins, we multiply the normalized
            # dark matter histogram with the expected MC histogram and then
            # take the sum. In the case that the dark matter events all fall
            # into a single bin, this gives us that bin, but smoothly
            # interpolates between the bins.
            dm_hists = get_mc_hists(dm_sample,xopt,bins,scale=1/len(dm_sample))
            frac = dm_hists[dm_particle_id].sum()
            dm_hists[dm_particle_id] /= frac
            mc_hists = get_mc_hists(data_mc_with_weights,xopt,bins,scale=xopt[0]/atmo_scale_factor,reweight=True)
            muon_hists = get_mc_hists(muon,xopt,bins,scale=xopt[5]/muon_scale_factor)
            n = (dm_hists[dm_particle_id]*(mc_hists[dm_particle_id] + muon_hists[dm_particle_id])).sum()
            # Set our discovery threshold to the p-value we want divided by the
            # number of bins. The idea here is that the number of bins is
            # approximately equal to the number of trials so we need to
            # increase our discovery threshold to account for the look
            # elsewhere effect.
            threshold = DISCOVERY_P_VALUE/(len(bins[dm_particle_id])-1)
            discovery = poisson.ppf(1-threshold,n) + 1 - n
            # Here, we scale the discovery threshold by the fraction of the
            # dark matter hist in the histogram range. The idea is that if only
            # a small fraction of the dark matter histogram falls into the
            # histogram range, the total number of dark matter events returned
            # by the fit can be larger by this amount. I noticed this when
            # testing under the null hypothesis that the majority of the
            # "discoveries" were on the edge of the histogram.
            discovery_array[dm_particle_id][i] = discovery/frac
            best_fit[dm_particle_id][i] = xopt[6]

    return limits, best_fit, discovery_array

if __name__ == '__main__':
    import argparse
    import numpy as np
    import pandas as pd
    import sys
    import h5py
    from sddm.plot_energy import *
    from sddm.plot import *
    from sddm import setup_matplotlib
    import nlopt
    from sddm.renormalize import *

    parser = argparse.ArgumentParser("plot fit results")
    parser.add_argument("filenames", nargs='+', help="input files")
    parser.add_argument("--save", action='store_true', default=False, help="save corner plots for backgrounds")
    parser.add_argument("--mc", nargs='+', required=True, help="atmospheric MC files")
    parser.add_argument("--muon-mc", nargs='+', required=True, help="muon MC files")
    parser.add_argument("--nhit-thresh", type=int, default=None, help="nhit threshold to apply to events before processing (should only be used for testing to speed things up)")
    parser.add_argument("--steps", type=int, default=1000, help="number of steps in the MCMC chain")
    parser.add_argument("--pull", type=int, default=0, help="plot pull plots")
    parser.add_argument("--weights", nargs='+', required=True, help="GENIE reweight HDF5 files")
    parser.add_argument("--print-nll", action='store_true', default=False, help="print nll values")
    parser.add_argument("--walkers", type=int, default=100, help="number of walkers")
    parser.add_argument("--thin", type=int, default=10, help="number of steps to thin")
    parser.add_argument("--test", type=int, default=0, help="run tests to check discovery threshold")
    parser.add_argument("--run-list", default=None, help="run list")
    parser.add_argument("--mcpl", nargs='+', required=True, help="GENIE MCPL files")
    parser.add_argument("--run-info", required=True, help="run_info.log autosno file")
    args = parser.parse_args()

    setup_matplotlib(args.save)

    import matplotlib.pyplot as plt

    rhdr = pd.concat([read_hdf(filename, "rhdr").assign(filename=filename) for filename in args.filenames],ignore_index=True)

    if args.run_list is not None:
        run_list = np.genfromtxt(args.run_list)
        rhdr = rhdr[rhdr.run.isin(run_list)]

    # Loop over runs to prevent using too much memory
    evs = []
    for run, df in rhdr.groupby('run'):
        evs.append(get_events(df.filename.values, merge_fits=True, nhit_thresh=args.nhit_thresh))
    ev = pd.concat(evs).reset_index()

    livetime = 0.0
    livetime_pulse_gt = 0.0
    for _ev in evs:
        if not np.isnan(_ev.attrs['time_10_mhz']):
            livetime += _ev.attrs['time_10_mhz']
        else:
            livetime += _ev.attrs['time_pulse_gt']
        livetime_pulse_gt += _ev.attrs['time_pulse_gt']

    print("livetime            = %.2f" % livetime)
    print("livetime (pulse gt) = %.2f" % livetime_pulse_gt)

    if args.run_info:
        livetime_run_info = 0.0
        run_info = np.genfromtxt(args.run_info,usecols=range(4),dtype=(np.int,np.int,np.double,np.double))
        for run in set(ev.run.values):
            for i in range(run_info.shape[0]):
                if run_info[i][0] == run:
                    livetime_run_info += run_info[i][3]
        print("livetime (run info) = %.2f" % livetime_run_info)

    ev = correct_energy_bias(ev)

    # Note: We loop over the MC filenames here instead of just passing the
    # whole list to get_events() because I had to rerun some of the MC events
    # using SNOMAN and so most of the runs actually have two different files
    # and otherwise the GTIDs will clash
    ev_mcs = []
    for filename in args.mc:
        ev_mcs.append(get_events([filename], merge_fits=True, nhit_thresh=args.nhit_thresh, mc=True))
    ev_mc = pd.concat([ev_mc for ev_mc in ev_mcs if len(ev_mc) > 0]).reset_index()

    if (~rhdr.run.isin(ev_mc.run)).any():
        print_warning("Error! The following runs have no Monte Carlo: %s" % \
            np.unique(rhdr.run[~rhdr.run.isin(ev_mc.run)].values))
        sys.exit(1)

    muon_mc = get_events(args.muon_mc, merge_fits=True, nhit_thresh=args.nhit_thresh, mc=True)
    weights = pd.concat([read_hdf(filename, "weights") for filename in args.weights],ignore_index=True)

    # Add the "flux_weight" column to the ev_mc data since I stupidly simulated
    # the muon neutrino flux for the tau neutrino flux in GENIE. Doh!
    mcpl = load_mcpl_files(args.mcpl)
    ev_mc = renormalize_data(ev_mc.reset_index(),mcpl)

    # Merge weights with MCPL dataframe to get the unique id column in the
    # weights dataframe since that is what we use to merge with the Monte
    # Carlo.
    weights = pd.merge(weights,mcpl[['run','evn','unique_id']],on=['run','evn'],how='left')

    # There are a handful of weights which turn out to be slightly negative for
    # some reason. For example:
    #
    # run  evn  universe    weight
    # 10970   25       597 -0.000055
    # 11389   87       729 -0.021397
    # 11701  204         2 -0.000268
    # 11919  120        82 -0.002245
    # 11976  163        48 -0.000306
    # 11976  163       710 -0.000022
    # 12131   76       175 -0.000513
    # 12207   70       255 -0.002925
    # 12207   70       282 -0.014856
    # 12207   70       368 -0.030593
    # 12207   70       453 -0.019011
    # 12207   70       520 -0.020748
    # 12207   70       834 -0.028754
    # 12207   70       942 -0.020309
    # 12233  230       567 -0.000143
    # 12618  168       235 -0.000020
    # 13428  128        42 -0.083639
    # 14264   23       995 -0.017637
    # 15034   69       624 -0.000143
    # 15752  154       957 -0.006827
    weights = weights[weights.weight > 0]

    ev_mc = correct_energy_bias(ev_mc)
    muon_mc = correct_energy_bias(muon_mc)

    # Set all prompt events in the MC to be muons
    muon_mc.loc[muon_mc.prompt & muon_mc.filename.str.contains("cosmic"),'muon'] = True

    ev = ev.reset_index()
    ev_mc = ev_mc.reset_index()
    muon_mc = muon_mc.reset_index()

    # 00-orphan cut
    ev = ev[(ev.gtid & 0xff) != 0]
    ev_mc = ev_mc[(ev_mc.gtid & 0xff) != 0]
    muon_mc = muon_mc[(muon_mc.gtid & 0xff) != 0]

    # remove events 200 microseconds after a muon
    ev = ev.groupby('run',group_keys=False).apply(muon_follower_cut)

    # Get rid of events which don't have a successful fit
    ev = ev[~np.isnan(ev.fmin)]
    ev_mc = ev_mc[~np.isnan(ev_mc.fmin)]
    muon_mc = muon_mc[~np.isnan(muon_mc.fmin)]

    # require (r < av radius)
    ev = ev[ev.r < AV_RADIUS]
    ev_mc = ev_mc[ev_mc.r < AV_RADIUS]
    muon_mc = muon_mc[muon_mc.r < AV_RADIUS]

    fiducial_volume = (4/3)*np.pi*(AV_RADIUS)**3

    # require psi < 6
    ev = ev[ev.psi < 6]
    ev_mc = ev_mc[ev_mc.psi < 6]
    muon_mc = muon_mc[muon_mc.psi < 6]

    data = ev[ev.signal & ev.prompt & ~ev.atm]
    data_atm = ev[ev.signal & ev.prompt & ev.atm]

    # Right now we use the muon Monte Carlo in the fit. If you want to use the
    # actual data, you can comment the next two lines and then uncomment the
    # two after that.
    muon = muon_mc[muon_mc.muon & muon_mc.prompt & ~muon_mc.atm]
    muon_atm = muon_mc[muon_mc.muon & muon_mc.prompt & muon_mc.atm]
    #muon = ev[ev.muon & ev.prompt & ~ev.atm]
    #muon_atm = ev[ev.muon & ev.prompt & ev.atm]

    if not args.pull and not args.test:
        ev_mc = ev_mc[ev_mc.run.isin(rhdr.run)]

    data_mc = ev_mc[ev_mc.signal & ev_mc.prompt & ~ev_mc.atm]
    data_atm_mc = ev_mc[ev_mc.signal & ev_mc.prompt & ev_mc.atm]

    bins = {20:np.logspace(np.log10(20),np.log10(10e3),21),
            22:np.logspace(np.log10(20),np.log10(10e3),21)[:-5],
            2020:np.logspace(np.log10(20),np.log10(10e3),21),
            2022:np.logspace(np.log10(20),np.log10(10e3),21)[:-5],
            2222:np.logspace(np.log10(20),np.log10(10e3),21)[:-5]}

    atmo_scale_factor = 100.0
    muon_scale_factor = len(muon) + len(muon_atm)

    if args.pull:
        pull = [[] for i in range(len(FIT_PARS))]

        # Set the random seed so we get reproducible results here
        np.random.seed(0)

        for i in range(args.pull):
            xtrue = sample_priors()

            # Calculate expected number of events
            N = len(data_mc)*xtrue[0]/atmo_scale_factor
            N_atm = len(data_atm_mc)*xtrue[0]/atmo_scale_factor
            N_muon = len(muon)*xtrue[5]/muon_scale_factor
            N_muon_atm = len(muon_atm)*xtrue[5]/muon_scale_factor
            N_dm = xtrue[6]

            # Calculate observed number of events
            n = np.random.poisson(N)
            n_atm = np.random.poisson(N_atm)
            n_muon = np.random.poisson(N_muon)
            n_muon_atm = np.random.poisson(N_muon_atm)
            n_dm = np.random.poisson(N_dm)

            dm_particle_id = np.random.choice([2020,2222])
            dm_mass = np.random.uniform(20,10e3)
            dm_energy = dm_mass

            # Sample data from Monte Carlo
            data = pd.concat((data_mc.sample(n=n,weights='flux_weight',replace=True), muon.sample(n=n_muon,replace=True)))
            data_atm = pd.concat((data_atm_mc.sample(n=n_atm,weights='flux_weight',replace=True), muon_atm.sample(n=n_muon_atm,replace=True)))

            # Smear the energies by the additional energy resolution
            data.loc[data.id1 == 20,'energy1'] *= (1+xtrue[1]+np.random.randn(np.count_nonzero(data.id1 == 20))*xtrue[2])
            data.loc[data.id1 == 22,'energy1'] *= (1+xtrue[3]+np.random.randn(np.count_nonzero(data.id1 == 22))*xtrue[4])
            data.loc[data.id2 == 20,'energy2'] *= (1+xtrue[1]+np.random.randn(np.count_nonzero(data.id2 == 20))*xtrue[2])
            data.loc[data.id2 == 22,'energy2'] *= (1+xtrue[3]+np.random.randn(np.count_nonzero(data.id2 == 22))*xtrue[4])
            data['ke'] = data['energy1'].fillna(0) + data['energy2'].fillna(0) + data['energy3'].fillna(0)

            data_atm.loc[data_atm.id1 == 20,'energy1'] *= (1+xtrue[1]+np.random.randn(np.count_nonzero(data_atm.id1 == 20))*xtrue[2])
            data_atm.loc[data_atm.id1 == 22,'energy1'] *= (1+xtrue[3]+np.random.randn(np.count_nonzero(data_atm.id1 == 22))*xtrue[4])
            data_atm.loc[data_atm.id2 == 20,'energy2'] *= (1+xtrue[1]+np.random.randn(np.count_nonzero(data_atm.id2 == 20))*xtrue[2])
            data_atm.loc[data_atm.id2 == 22,'energy2'] *= (1+xtrue[3]+np.random.randn(np.count_nonzero(data_atm.id2 == 22))*xtrue[4])
            data_atm['ke'] = data_atm['energy1'].fillna(0) + data_atm['energy2'].fillna(0) + data_atm['energy3'].fillna(0)

            xopt, universe, samples = do_fit(dm_particle_id,dm_mass,dm_energy,data,muon,data_mc,weights,atmo_scale_factor,muon_scale_factor,bins,args.steps,args.print_nll,args.walkers,args.thin,refit=False)

            for i in range(len(FIT_PARS)):
                # The "pull plots" we make here are actually produced via a
                # procedure called "Simulation Based Calibration".
                #
                # See https://arxiv.org/abs/1804.06788.
                pull[i].append(percentileofscore(samples[:,i],xtrue[i]))

        fig = plt.figure()
        axes = []
        for i, name in enumerate(FIT_PARS):
            axes.append(plt.subplot(4,2,i+1))
            n, bins, patches = plt.hist(pull[i],bins=np.linspace(0,100,11),histtype='step')
            expected = len(pull[i])/(len(bins)-1)
            plt.axhline(expected,color='k',ls='--',alpha=0.25)
            plt.axhspan(poisson.ppf(0.005,expected), poisson.ppf(0.995,expected), facecolor='0.5', alpha=0.25)
            plt.title(name)
        for ax in axes:
            despine(ax=ax,left=True,trim=True)
            ax.get_yaxis().set_visible(False)
        plt.tight_layout()

        if args.save:
            fig.savefig("dm_search_pull_plot.pdf")
            fig.savefig("dm_search_pull_plot.eps")
        else:
            plt.show()

        sys.exit(0)

    if args.test:
        # Set the random seed so we get reproducible results here
        np.random.seed(0)

        data_mc_with_weights = pd.merge(data_mc,weights[weights.universe == 0],how='left',on=['run','unique_id'])
        data_atm_mc_with_weights = pd.merge(data_atm_mc,weights[weights.universe == 0],how='left',on=['run','unique_id'])

        discoveries = 0

        data_mc_with_weights.weight *= data_mc_with_weights.flux_weight
        data_atm_mc_with_weights.weight *= data_atm_mc_with_weights.flux_weight

        for i in range(args.test):
            xtrue = sample_priors()

            # Calculate expected number of events
            N = len(data_mc)*xtrue[0]/atmo_scale_factor
            N_atm = len(data_atm_mc)*xtrue[0]/atmo_scale_factor
            N_muon = len(muon)*xtrue[5]/muon_scale_factor
            N_muon_atm = len(muon_atm)*xtrue[5]/muon_scale_factor

            # Calculate observed number of events
            n = np.random.poisson(N)
            n_atm = np.random.poisson(N_atm)
            n_muon = np.random.poisson(N_muon)
            n_muon_atm = np.random.poisson(N_muon_atm)

            # Sample data from Monte Carlo
            data = pd.concat((data_mc_with_weights.sample(n=n,replace=True,weights='weight'), muon.sample(n=n_muon,replace=True)))
            data_atm = pd.concat((data_atm_mc_with_weights.sample(n=n_atm,replace=True,weights='weight'), muon_atm.sample(n=n_muon_atm,replace=True)))

            # Smear the energies by the additional energy resolution
            data.loc[data.id1 == 20,'energy1'] *= (1+xtrue[1]+np.random.randn(np.count_nonzero(data.id1 == 20))*xtrue[2])
            data.loc[data.id1 == 22,'energy1'] *= (1+xtrue[3]+np.random.randn(np.count_nonzero(data.id1 == 22))*xtrue[4])
            data.loc[data.id2 == 20,'energy2'] *= (1+xtrue[1]+np.random.randn(np.count_nonzero(data.id2 == 20))*xtrue[2])
            data.loc[data.id2 == 22,'energy2'] *= (1+xtrue[3]+np.random.randn(np.count_nonzero(data.id2 == 22))*xtrue[4])
            data['ke'] = data['energy1'].fillna(0) + data['energy2'].fillna(0) + data['energy3'].fillna(0)

            data_atm.loc[data_atm.id1 == 20,'energy1'] *= (1+xtrue[1]+np.random.randn(np.count_nonzero(data_atm.id1 == 20))*xtrue[2])
            data_atm.loc[data_atm.id1 == 22,'energy1'] *= (1+xtrue[3]+np.random.randn(np.count_nonzero(data_atm.id1 == 22))*xtrue[4])
            data_atm.loc[data_atm.id2 == 20,'energy2'] *= (1+xtrue[1]+np.random.randn(np.count_nonzero(data_atm.id2 == 20))*xtrue[2])
            data_atm.loc[data_atm.id2 == 22,'energy2'] *= (1+xtrue[3]+np.random.randn(np.count_nonzero(data_atm.id2 == 22))*xtrue[4])
            data_atm['ke'] = data_atm['energy1'].fillna(0) + data_atm['energy2'].fillna(0) + data_atm['energy3'].fillna(0)

            limits, best_fit, discovery_array = get_limits(DM_MASSES,data,muon,data_mc,atmo_scale_factor,muon_scale_factor,bins,args.steps,args.print_nll,args.walkers,args.thin)

            for id in (2020,2222):
                if (best_fit[id] > discovery_array[id]).any():
                    discoveries += 1

        print("expected %.2f discoveries" % DISCOVERY_P_VALUE)
        print("actually got %i/%i = %.2f discoveries" % (discoveries,args.test,discoveries/args.test))

        sys.exit(0)

    limits, best_fit, discovery_array = get_limits(DM_MASSES,data,muon,data_mc,atmo_scale_factor,muon_scale_factor,bins,args.steps,args.print_nll,args.walkers,args.thin)

    fig = plt.figure()
    for color, dm_particle_id in zip(('C0','C1'),(2020,2222)):
        plt.plot(DM_MASSES[dm_particle_id],np.array(limits[dm_particle_id])*100**3*3600*24*365/fiducial_volume/livetime,color=color,label='$' + ''.join([particle_id[int(''.join(x))] for x in grouper(str(dm_particle_id),2)]) + '$')
    plt.gca().set_xscale("log")
    despine(fig,trim=True)
    plt.xlabel("Energy (MeV)")
    plt.ylabel("Event Rate Limit (events/$\mathrm{m}^3$/year)")
    plt.legend()
    plt.tight_layout()

    if args.save:
        plt.savefig("dm_search_limit.pdf")
        plt.savefig("dm_search_limit.eps")
    else:
        plt.suptitle("Dark Matter Limits")

    fig = plt.figure()
    for color, dm_particle_id in zip(('C0','C1'),(2020,2222)):
        plt.plot(DM_MASSES[dm_particle_id],best_fit[dm_particle_id],color=color,label='$' + ''.join([particle_id[int(''.join(x))] for x in grouper(str(dm_particle_id),2)]) + '$')
        plt.plot(DM_MASSES[dm_particle_id],discovery_array[dm_particle_id],color=color,ls='--')
    plt.gca().set_xscale("log")
    despine(fig,trim=True)
    plt.xlabel("Energy (MeV)")
    plt.ylabel("Event Rate Limit (events)")
    plt.legend()
    plt.tight_layout()

    if args.save:
        plt.savefig("dm_best_fit_with_discovery_threshold.pdf")
        plt.savefig("dm_best_fit_with_discovery_threshold.eps")
    else:
        plt.suptitle("Best Fit Dark Matter")
        plt.show()