aboutsummaryrefslogtreecommitdiff
path: root/src
diff options
context:
space:
mode:
Diffstat (limited to 'src')
0 files changed, 0 insertions, 0 deletions
ef='#n49'>49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597
/* Copyright (c) 2019, Anthony Latorre <tlatorre at uchicago>
 *
 * This program is free software: you can redistribute it and/or modify it
 * under the terms of the GNU General Public License as published by the Free
 * Software Foundation, either version 3 of the License, or (at your option)
 * any later version.

 * This program is distributed in the hope that it will be useful, but WITHOUT
 * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
 * FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
 * more details.

 * You should have received a copy of the GNU General Public License along with
 * this program. If not, see <https://www.gnu.org/licenses/>.
 */

#include "likelihood.h"
#include <stdlib.h> /* for size_t */
#include "pmt.h"
#include <gsl/gsl_integration.h>
#include "muon.h"
#include "misc.h"
#include <gsl/gsl_sf_gamma.h>
#include "sno.h"
#include "vector.h"
#include "event.h"
#include "optics.h"
#include "sno_charge.h"
#include "pdg.h"
#include "path.h"
#include <stddef.h> /* for size_t */
#include "scattering.h"
#include "solid_angle.h"
#include <gsl/gsl_roots.h>
#include <gsl/gsl_errno.h>
#include "pmt_response.h"
#include "electron.h"
#include "proton.h"
#include "id_particles.h"
#include <gsl/gsl_cdf.h>
#include "find_peaks.h"
#include <gsl/gsl_interp.h>
#include <gsl/gsl_spline.h>

particle *particle_init(int id, double T0, size_t n)
{
    /* Returns a struct with arrays of the particle position and kinetic
     * energy. This struct can then be passed to particle_get_energy() to
     * interpolate the particle's kinetic energy at any point along the track.
     * For example:
     *
     *     particle *p = particle_init(IDP_MU_MINUS, 1000.0, 100);
     *     double T = particle_get_energy(x, p);
     *
     * To compute the kinetic energy as a function of distance we need to solve
     * the following integral equation:
     *
     *     T(x) = T0 - \int_0^x dT(T(x))/dx
     *
     * which we solve by dividing the track up into `n` segments and then
     * numerically computing the energy at each step. */
    size_t i;
    double dEdx, rad, norm, pdf, pdf_last;

    particle *p = malloc(sizeof(particle));
    p->id = id;
    p->x = malloc(sizeof(double)*n);
    p->T = malloc(sizeof(double)*n);
    p->n = n;
    p->a = 0.0;
    p->b = 0.0;
    p->cos_theta = calloc(n, sizeof(double));
    p->cdf_shower = calloc(n, sizeof(double));
    p->spline_shower = gsl_spline_alloc(gsl_interp_linear, n);
    p->acc_shower = gsl_interp_accel_alloc();
    p->shower_photons = 0.0;
    p->delta_ray_a = 0.0;
    p->delta_ray_b = 0.0;
    p->cdf_delta = calloc(n, sizeof(double));
    p->x_shower = calloc(n, sizeof(double));
    p->gamma_pdf = calloc(n, sizeof(double));
    p->spline_delta = gsl_spline_alloc(gsl_interp_linear, n);
    p->acc_delta = gsl_interp_accel_alloc();
    p->delta_ray_photons = 0.0;

    p->x[0] = 0;
    p->T[0] = T0;

    switch (id) {
    case IDP_E_MINUS:
    case IDP_E_PLUS:
        p->mass = ELECTRON_MASS;
        /* We use the density of light water here since we don't have the
         * tables for heavy water for electrons. */
        p->range = electron_get_range(T0, WATER_DENSITY);

        p->a = electron_get_angular_distribution_alpha(T0);
        p->b = electron_get_angular_distribution_beta(T0);

        electron_get_position_distribution_parameters(T0, &p->pos_a, &p->pos_b);

        p->delta_ray_photons = 0.0;

        /* Now we loop over the points along the track and assume dE/dx is
         * constant between points. */
        rad = 0.0;
        for (i = 1; i < n; i++) {
            p->x[i] = p->range*i/(n-1);
            dEdx = electron_get_dEdx(p->T[i-1], WATER_DENSITY);
            p->T[i] = p->T[i-1] - dEdx*(p->x[i]-p->x[i-1]);
            dEdx = electron_get_dEdx_rad(p->T[i-1], WATER_DENSITY);
            rad += dEdx*(p->x[i]-p->x[i-1]);
        }
        /* Make sure that the energy is zero at the last step. This is so that
         * when we try to bisect the point along the track where the speed of
         * the particle is equal to BETA_MIN, we guarantee that there is a
         * point along the track where the speed drops below BETA_MIN.
         *
         * A possible future improvement would be to dynamically compute the
         * range here using the dE/dx table instead of reading in the range. */
        p->T[n-1] = 0;

        p->shower_photons = electron_get_shower_photons(T0, rad);

        break;
    case IDP_MU_MINUS:
    case IDP_MU_PLUS:
        p->mass = MUON_MASS;
        /* We use the density of heavy water here since we only load the heavy
         * water table for muons.
         *
         * FIXME: It would be nice in the future to load both tables and then
         * load the correct table based on the media. */
        p->range = muon_get_range(T0, HEAVY_WATER_DENSITY);

        p->a = muon_get_angular_distribution_alpha(T0);
        p->b = muon_get_angular_distribution_beta(T0);

        muon_get_position_distribution_parameters(T0, &p->pos_a, &p->pos_b);

        muon_get_delta_ray_distribution_parameters(T0, &p->delta_ray_a, &p->delta_ray_b);

        p->delta_ray_photons = muon_get_delta_ray_photons(T0);

        /* Now we loop over the points along the track and assume dE/dx is
         * constant between points. */
        rad = 0.0;
        for (i = 1; i < n; i++) {
            p->x[i] = p->range*i/(n-1);
            dEdx = muon_get_dEdx(p->T[i-1], HEAVY_WATER_DENSITY);
            p->T[i] = p->T[i-1] - dEdx*(p->x[i]-p->x[i-1]);
            dEdx = muon_get_dEdx_rad(p->T[i-1], HEAVY_WATER_DENSITY);
            rad += dEdx*(p->x[i]-p->x[i-1]);
        }
        /* Make sure that the energy is zero at the last step. This is so that
         * when we try to bisect the point along the track where the speed of
         * the particle is equal to BETA_MIN, we guarantee that there is a
         * point along the track where the speed drops below BETA_MIN.
         *
         * A possible future improvement would be to dynamically compute the
         * range here using the dE/dx table instead of reading in the range. */
        p->T[n-1] = 0;

        p->shower_photons = muon_get_shower_photons(T0, rad);

        break;
    case IDP_PROTON:
        p->mass = PROTON_MASS;
        /* We use the density of light water here since we don't have the
         * tables for heavy water for protons. */
        p->range = proton_get_range(T0, WATER_DENSITY);

        /* FIXME: add delta ray photons for muons. */
        p->delta_ray_photons = 0.0;

        /* Now we loop over the points along the track and assume dE/dx is
         * constant between points. */
        rad = 0.0;
        for (i = 1; i < n; i++) {
            p->x[i] = p->range*i/(n-1);
            dEdx = proton_get_dEdx(p->T[i-1], WATER_DENSITY);
            p->T[i] = p->T[i-1] - dEdx*(p->x[i]-p->x[i-1]);
            dEdx = proton_get_dEdx_rad(p->T[i-1], WATER_DENSITY);
            rad += dEdx*(p->x[i]-p->x[i-1]);
        }
        /* Make sure that the energy is zero at the last step. This is so that
         * when we try to bisect the point along the track where the speed of
         * the particle is equal to BETA_MIN, we guarantee that there is a
         * point along the track where the speed drops below BETA_MIN.
         *
         * A possible future improvement would be to dynamically compute the
         * range here using the dE/dx table instead of reading in the range. */
        p->T[n-1] = 0;

        /* FIXME: Add shower photons for protons. */
        p->shower_photons = 0.0;

        break;
    default:
        fprintf(stderr, "unknown particle id %i\n", id);
        exit(1);
    }

    if (p->shower_photons) {
        norm = electron_get_angular_pdf_norm(p->a, p->b, 1/get_avg_index_d2o());

        for (i = 0; i < n; i++) {
            p->cos_theta[i] = -1.0 + 2.0*i/(n-1);
            /* Note: We assume here that the peak of the angular distribution
             * is at the Cerenkov angle for a particle with beta = 1. This
             * seems to be an OK assumption for high energy showers, but is not
             * exactly correct for showers from lower energy electrons or for
             * delta rays from lower energy muons. It seems good enough, but in
             * the future it would be nice to parameterize this.
             *
             * Note: We add EPSILON to the pdf since the cdf values are
             * required to be strictly increasing in order to use gsl splines. */
            pdf = electron_get_angular_pdf_no_norm(p->cos_theta[i], p->a, p->b, 1/get_avg_index_d2o())/norm + EPSILON;
            if (i > 0)
                p->cdf_shower[i] = p->cdf_shower[i-1] + (pdf_last + pdf)*(p->cos_theta[i]-p->cos_theta[i-1])/2.0;
            else
                p->cdf_shower[i] = 0.0;
            pdf_last = pdf;
        }

        gsl_spline_init(p->spline_shower, p->cdf_shower, p->cos_theta, n);

        p->xlo_shower = gsl_cdf_gamma_Pinv(0.01,p->pos_a,p->pos_b);
        p->xhi_shower = gsl_cdf_gamma_Pinv(0.99,p->pos_a,p->pos_b);

        for (i = 0; i < n; i++) {
            p->x_shower[i] = p->xlo_shower + (p->xhi_shower-p->xlo_shower)*i/(n-1);
            p->gamma_pdf[i] = gamma_pdf(p->x_shower[i],p->pos_a,p->pos_b);
        }
    }

    if (p->delta_ray_photons) {
        /* Calculate the normalization constant for the angular distribution. */
        norm = electron_get_angular_pdf_norm(p->delta_ray_a, p->delta_ray_b, 1/get_avg_index_d2o());

        for (i = 0; i < n; i++) {
            p->cos_theta[i] = -1.0 + 2.0*i/(n-1);
            /* Note: We assume here that the peak of the angular distribution
             * is at the Cerenkov angle for a particle with beta = 1. This
             * seems to be an OK assumption for high energy showers, but is not
             * exactly correct for showers from lower energy electrons or for
             * delta rays from lower energy muons. It seems good enough, but in
             * the future it would be nice to parameterize this.
             *
             * Note: We add EPSILON to the pdf since the cdf values are
             * required to be strictly increasing in order to use gsl splines. */
            pdf = electron_get_angular_pdf_no_norm(p->cos_theta[i], p->delta_ray_a, p->delta_ray_b, 1/get_avg_index_d2o())/norm + EPSILON;
            if (i > 0)
                p->cdf_delta[i] = p->cdf_delta[i-1] + (pdf + pdf_last)*(p->cos_theta[i]-p->cos_theta[i-1])/2.0;
            else
                p->cdf_delta[i] = 0.0;
            pdf_last = pdf;
        }

        gsl_spline_init(p->spline_delta, p->cdf_delta, p->cos_theta, n);
    }

    return p;
}

/* Returns the cosine of the angle between a particle travelling in a straight
 * line and a PMT after a distance `x` in cm.
 *
 * `R` is the distance between the particle and the PMT at the start of the
 * path, and `cos_gamma` is the cosine of the angle between the particle
 * direction and the PMT at the start of the path.  */
double x_to_cos_theta(double x, double R, double cos_gamma)
{
    return (R*cos_gamma-x)/sqrt(R*R+x*x-2*x*R*cos_gamma);
}

/* Returns the x position along a straight particle path given the cosine of
 * the angle between the particle direction and a PMT.
 *
 * `R` is the distance between the particle and the PMT at the start of the
 * path, `cos_gamma` is the cosine of the angle between the particle
 * direction and the PMT at the start of the path, and `sin_gamma` is the sine
 * of the angle (this is passed simply to avoid an extra call to sin()). */
double cos_theta_to_x(double cos_theta, double R, double cos_gamma, double sin_gamma)
{
    double sin_theta;

    /* If cos(theta) == 1.0 we must be at the beginning of the track. */
    if (cos_theta == 1.0) return R*cos_gamma;

    /* We don't care about the sign here because theta is in the range [0,pi]
     * and so sin(theta) is always positive. */
    sin_theta = sqrt(1-cos_theta*cos_theta);

    /* This result comes from using the law of sines. */
    return R*(cos_gamma - cos_theta*sin_gamma/sin_theta);
}

/* Returns the x points and weights for numerically integrating the delta ray
 * photons.
 *
 * The integral we want to solve here is:
 *
 *     \int x n(x) f(x) g(x)
 *
 * where n(x) is the number of delta ray photons emitted per cm, f(x) is the
 * angular distribution of the delta ray photons, and g(x) contains all the
 * other factors like solid angle, absorption, quantum efficiency, etc.
 *
 * We approximate this integral as:
 *
 *      \sum_i w_i g(x_i)
 *
 * where the weights and points are returned by this function.
 *
 * We currently assume the number of delta ray photons is constant along the
 * particle track, i.e.
 *
 *     n(x) = 1/range
 *
 * This is an OK approximation, but in the future it might be nice to
 * parameterize the number of photons produced as a function of x.
 *
 * `distance_to_psup` is the distance to the PSUP. If the distance to the PSUP
 * is shorter than the range then we only integrate to the PSUP.
 *
 * Other arguments:
 *
 *     R - distance to PMT from start of track
 *     cos_gamma - cosine of angle between track and PMT at start of track
 *     sin_gamma - sine of angle between track and PMT at start of track
 *
 * Returns 1 if the integration can be skipped, and 0 otherwise. */
int get_delta_ray_weights(particle *p, double range, double distance_to_psup, double *x, double *w, size_t n, double R, double cos_gamma, double sin_gamma)
{
    size_t i;
    double x1, x2, cdf1, cdf2, cdf, delta, cos_theta, cos_theta_last, xcdf, xcdf_last;

    /* First we need to figure out the bounds of integration in x. */
    x1 = 0.0;

    if (range < distance_to_psup)
        x2 = range;
    else
        x2 = distance_to_psup;

    /* Map bounds of integration in x -> cos(theta) and then find the values of
     * the CDF at the endpoints. */
    cdf1 = interp1d(x_to_cos_theta(x1,R,cos_gamma),p->cos_theta,p->cdf_delta,p->n);
    cdf2 = interp1d(x_to_cos_theta(x2,R,cos_gamma),p->cos_theta,p->cdf_delta,p->n);

    delta = (cdf2-cdf1)/n;

    /* Now, we loop over different values of the CDF spaced evenly by delta and
     * compute cos(theta) for each of these values, map that value back to x,
     * and then compute the weight associated with that point. */
    for (i = 0; i < n + 1; i++) {
        if (i < n)
            cdf = cdf1 + i*delta;
        else
            cdf = cdf2;

        cos_theta = gsl_spline_eval(p->spline_delta,cdf,p->acc_delta);
        xcdf = cos_theta_to_x(cos_theta,R,cos_gamma,sin_gamma);

        /* Occasionally due to floating point rounding error, it's possible
         * that cdf > cdf2 and so we end up with xcdf = inf. To prevent this,
         * we just make sure that xcdf is bounded by x1 and x2. */
        if (xcdf < x1) xcdf = x1;
        if (xcdf > x2) xcdf = x2;

        if (i > 0) {
            /* For each interval we approximate the integral as:
             *
             *     \int f(x) g(x) ~ <f(x)> \int g(x)
             *
             * and so we are free to choose best how to approximate the second
             * integral. Since g(x) is assumed to be slowly varying as a
             * function of x, it shouldn't matter too much, however based on
             * some testing I found that it was best to use the midpoint, i.e.
             *
             *     \int g(x) ~ g((a+b)/2)
             *
             * as opposed to evaluating g(x) at the beginning, end, or
             * averaging the function at the two points. */
            x[i-1] = (xcdf + xcdf_last)/2;
            w[i-1] = p->delta_ray_photons*delta*(1/range)*(xcdf - xcdf_last)/(cos_theta - cos_theta_last);
        }
        cos_theta_last = cos_theta;
        xcdf_last = xcdf;
    }

    return 0;
}

/* Returns the x points and weights for numerically integrating the shower
 * photons.
 *
 * The integral we want to solve here is:
 *
 *     \int x n(x) f(x) g(x)
 *
 * where n(x) is the number of shower photons emitted per cm, f(x) is the
 * angular distribution of the shower photons, and g(x) contains all the other
 * factors like solid angle, absorption, quantum efficiency, etc.
 *
 * We approximate this integral as:
 *
 *      \sum_i w_i g(x_i)
 *
 * where the weights and points are returned by this function.
 *
 * `distance_to_psup` is the distance to the PSUP. If the distance to the PSUP is
 * shorter than the shower range then we only integrate to the PSUP.
 *
 * Other arguments:
 *
 *     R - distance to PMT from start of track
 *     cos_gamma - cosine of angle between track and PMT at start of track
 *     sin_gamma - sine of angle between track and PMT at start of track
 *
 * Returns 1 if the integration can be skipped, and 0 otherwise. */
int get_shower_weights(particle *p, double distance_to_psup, double *x, double *w, size_t n, double R, double cos_gamma, double sin_gamma)
{
    size_t i;
    double x1, x2, cdf1, cdf2, cdf, delta, cos_theta, cos_theta_last, xcdf, xcdf_last;

    /* First we need to figure out the bounds of integration in x. */

    /* If the start of the shower is past the PSUP, no light will reach the
     * PMTs, so we just return 1. */
    if (p->xlo_shower > distance_to_psup)
        return 1;

    x1 = p->xlo_shower;

    if (p->xhi_shower > distance_to_psup)
        x2 = distance_to_psup;
    else
        x2 = p->xhi_shower;

    /* Map bounds of integration in x -> cos(theta) and then find the values of
     * the CDF at the endpoints. */
    cdf1 = interp1d(x_to_cos_theta(x1,R,cos_gamma),p->cos_theta,p->cdf_shower,p->n);
    cdf2 = interp1d(x_to_cos_theta(x2,R,cos_gamma),p->cos_theta,p->cdf_shower,p->n);

    delta = (cdf2-cdf1)/n;

    /* Now, we loop over different values of the CDF spaced evenly by delta and
     * compute cos(theta) for each of these values, map that value back to x,
     * and then compute the weight associated with that point. */
    for (i = 0; i < n + 1; i++) {
        if (i < n)
            cdf = cdf1 + i*delta;
        else
            cdf = cdf2;

        cos_theta = gsl_spline_eval(p->spline_shower,cdf,p->acc_shower);
        xcdf = cos_theta_to_x(cos_theta,R,cos_gamma,sin_gamma);

        /* Occasionally due to floating point rounding error, it's possible
         * that cdf > cdf2 and so we end up with xcdf = inf. To prevent this,
         * we just make sure that xcdf is bounded by x1 and x2. */
        if (xcdf < x1) xcdf = x1;
        if (xcdf > x2) xcdf = x2;

        if (i > 0) {
            /* For each interval we approximate the integral as:
             *
             *     \int f(x) g(x) ~ <f(x)> \int g(x)
             *
             * and so we are free to choose best how to approximate the second
             * integral. Since g(x) is assumed to be slowly varying as a
             * function of x, it shouldn't matter too much, however based on
             * some testing I found that it was best to use the midpoint, i.e.
             *
             *     \int g(x) ~ g((a+b)/2)
             *
             * as opposed to evaluating g(x) at the beginning, end, or
             * averaging the function at the two points. */
            x[i-1] = (xcdf + xcdf_last)/2;
            w[i-1] = p->shower_photons*delta*interp1d(x[i-1],p->x_shower,p->gamma_pdf,p->n)*(xcdf-xcdf_last)/(cos_theta - cos_theta_last);
        }
        cos_theta_last = cos_theta;
        xcdf_last = xcdf;
    }

    return 0;
}

double particle_get_energy(double x, particle *p)
{
    /* Returns the approximate kinetic energy of a particle in water after
     * travelling `x` cm with an initial kinetic energy `T`.
     *
     * Return value is in MeV. */
    double T;

    T = interp1d(x,p->x,p->T,p->n);

    if (T < 0) return 0;

    return T;
}

void particle_free(particle *p)
{
    free(p->x);
    free(p->T);
    free(p->cos_theta);
    free(p->cdf_shower);
    free(p->x_shower);
    free(p->gamma_pdf);
    free(p->cdf_delta);
    gsl_spline_free(p->spline_shower);
    gsl_spline_free(p->spline_delta);
    gsl_interp_accel_free(p->acc_shower);
    gsl_interp_accel_free(p->acc_delta);
    free(p);
}

static void get_expected_charge_shower(particle *p, double *pos, double *dir, int pmt, double *q, double *reflected, double *t)
{
    double pmt_dir[3], omega, f, f_reflec, cos_theta_pmt, charge, prob_abs, prob_sct, l_d2o, l_h2o;

    SUB(pmt_dir,pmts[pmt].pos,pos);

    normalize(pmt_dir);

    cos_theta_pmt = DOT(pmt_dir,pmts[pmt].normal);

    omega = get_solid_angle_fast(pos,pmts[pmt].pos,pmts[pmt].normal,PMT_RADIUS);

    f_reflec = get_weighted_pmt_reflectivity(-cos_theta_pmt);
    f = get_weighted_pmt_response(-cos_theta_pmt);

    get_path_length(pos,pmts[pmt].pos,AV_RADIUS,&l_d2o,&l_h2o);

    prob_abs = 1.0 - get_fabs_d2o(l_d2o)*get_fabs_h2o(l_h2o)*get_fabs_acrylic(AV_THICKNESS);
    prob_sct = 1.0 - get_fsct_d2o(l_d2o)*get_fsct_h2o(l_h2o)*get_fsct_acrylic(AV_THICKNESS);

    charge = get_weighted_quantum_efficiency()*omega/(2*M_PI);

    /* Note: We multiply the amount of Rayleigh scattered light here by 2 since
     * we are only calculating the fraction of Rayleigh scattered light that
     * would hit the PMT and the coverage in SNO+ is about 50%. */
    *reflected = (1.0-prob_abs)*(1.0-prob_sct)*f_reflec*charge + 2*prob_sct*charge;

    *t = (l_d2o*get_avg_index_d2o() + l_h2o*get_avg_index_h2o())/SPEED_OF_LIGHT;

    *q = (1.0-prob_abs)*(1.0-prob_sct)*f*charge;
}

/* Returns the angular width of the PMT bucket from the center of the PMT to
 * the edge of the bucket in the plane formed by the particle direction and the
 * direction to the PMT.
 *
 * `R` is the distance to the PMT, `r` is the PMT radius, and `sin_theta_pmt`
 * is the sine of the angle between the vector from the particle position to
 * the PMT and the PMT normal vector.
 *
 * This function is called get_theta0_min because we use this angular width to
 * set a minimum value for the RMS scattering angle of the particle as a kind
 * of hack to deal with the fact that we assume that the angular distribution
 * is constant across the face of the PMT. By introducing a minimum value for
 * the scattering RMS we broaden the angular distribution such that it
 * effectively averages across the face of a PMT. */
double get_theta0_min(double R, double r, double sin_theta_pmt)
{
    return fast_acos((R-r*sin_theta_pmt)/sqrt(r*r + R*R - 2*r*R*sin_theta_pmt));
}

static void get_expected_charge(double beta, double theta0, double *pos, double *dir, int pmt, double *q, double *reflected, double *t)
{
    double pmt_dir[3], cos_theta, sin_theta, n, omega, f, f_reflec, cos_theta_pmt, sin_theta_pmt, charge, prob_abs, prob_sct, l_d2o, l_h2o, cos_theta_cerenkov, distance_to_pmt;

    /* Previously the index of refraction was calculated based on the position,
     * i.e.:
     *
     *     n = (NORM(pos) <= AV_RADIUS) ? get_avg_index_d2o() : get_avg_index_h2o();
     *
     * but this was causing a discontinuity in the likelihood function when the
     * particle track crossed the AV since we're numerically integrating over a
     * finite set of points. */
    n = get_avg_index_d2o();

    cos_theta_cerenkov = 1/(beta*n);

    *q = 0.0;
    *t = 0.0;
    *reflected = 0.0;
    if (cos_theta_cerenkov > 1) return;

    SUB(pmt_dir,pmts[pmt].pos,pos);

    distance_to_pmt = NORM(pmt_dir);

    normalize(pmt_dir);

    /* Calculate the cosine of the angle between the track direction and the
     * vector to the PMT. */
    cos_theta = DOT(dir,pmt_dir);
    sin_theta = sqrt(1-cos_theta*cos_theta);

    cos_theta_pmt = -DOT(pmt_dir,pmts[pmt].normal);
    sin_theta_pmt = sqrt(1-cos_theta_pmt*cos_theta_pmt);

    theta0 = fmax(theta0,get_theta0_min(distance_to_pmt,PMT_RADIUS,sin_theta_pmt));

#ifdef FAST_GET_EXPECTED_CHARGE
    /* This next line is used to skip out of calculating the expected charge if
     * abs((cos(theta)-cos_theta_cherenkov)/(sin(theta)*theta0)) > 5. The idea
     * here is that later in the likelihood calculation the PDF for Cerenkov
     * light has a term like
     *
     *     exp(((cos(theta)-cos_theta_cherenkov)/(sin(theta)*theta0))**2)
     *
     * which will be less than 10^-25 if the following inequality holds and
     * therefore the charge should be negligible.
     *
     * However! I noticed that this line was causing discontinuities in the
     * likelihood when fitting low energy muons. I realized there are two
     * potential issues with this. One is that the PDF is multiplied by two
     * other terms: 1/(sin_theta*theta0) and the solid angle of the PMT.
     * Therefore if these are large it may have an impact. Second, the PDF
     * actually integrates over the Cerenkov spectrum and correctly takes into
     * account the change in the index as a function of wavelength.
     *
     * For now we don't use this to prevent the discontinuities. However, it
     * would be nice to use it in the future since it provides a massive ~2.5x
     * speedup. One idea for trying to eventually include it again is to update
     * the PDF for Cerenkov light to not include the wavelength dependence
     * (which would make it slightly less accurate, but it may be worth the
     * 2.5x speedup). */

    if (fabs(cos_theta-cos_theta_cerenkov) > 5*sin_theta*theta0) return;
#endif

    omega = get_solid_angle_fast(pos,pmts[pmt].pos,pmts[pmt].normal,PMT_RADIUS);

    f_reflec = get_weighted_pmt_reflectivity(cos_theta_pmt);
    f = get_weighted_pmt_response(cos_theta_pmt);

    get_path_length(pos,pmts[pmt].pos,AV_RADIUS,&l_d2o,&l_h2o);

    *t = (l_d2o*get_avg_index_d2o() + l_h2o*get_avg_index_h2o())/SPEED_OF_LIGHT;

    /* Probability that a photon is absorbed. We calculate this by computing:
     *
     *     1.0 - P(not absorbed in D2O)*P(not absorbed in H2O)*P(not absorbed in acrylic)
     *
     * since if we worked with the absorption probabilities directly it would
     * be more complicated, i.e.
     *
     *     P(absorbed in D2O) + P(absorbed in acrylic|not absorbed in D2O)*P(not absorbed in D2O) + ...
     *
     */
    prob_abs = 1.0 - get_fabs_d2o(l_d2o)*get_fabs_h2o(l_h2o)*get_fabs_acrylic(AV_THICKNESS);
    /* Similiar calculation for the probability that a photon is scattered.
     *
     * Technically we should compute this conditionally on the probability that
     * a photon is not absorbed, but since the probability of scattering is
     * pretty low, this is expected to be a very small effect. */
    prob_sct = 1.0 - get_fsct_d2o(l_d2o)*get_fsct_h2o(l_h2o)*get_fsct_acrylic(AV_THICKNESS);

    charge = omega*(1-cos_theta_cerenkov*cos_theta_cerenkov)*get_probability(beta, cos_theta, sin_theta, theta0);

    /* Note: We multiply the amount of Rayleigh scattered light here by 2 since
     * we are only calculating the fraction of Rayleigh scattered light that
     * would hit the PMT and the coverage in SNO+ is about 50%. */
    *reflected = (1.0-prob_abs)*(1.0-prob_sct)*f_reflec*charge + 2*prob_sct*charge;

    *q = (1.0-prob_abs)*(1.0-prob_sct)*f*charge;
}

double time_cdf(double t, double mu_noise, double mu_indirect, double *mu, size_t n, double *ts, double tmean, double *ts_sigma)
{
    /* Returns the CDF for the time distribution of photons at time `t`. */
    size_t i;
    double p, mu_total;

    p = mu_noise*t/GTVALID;

    if (t < tmean)
        ;
    else if (t < tmean + 2*PSUP_REFLECTION_TIME)
        p +=  mu_indirect*(t-tmean)/(2*PSUP_REFLECTION_TIME);
    else
        p +=  mu_indirect;

    mu_total = mu_noise + mu_indirect;
    for (i = 0; i < n; i++) {
        if (mu[i] == 0.0) continue;
        p += mu[i]*norm_cdf(t,ts[i],ts_sigma[i]);
        mu_total += mu[i];
    }

    return p/mu_total;
}

/* Returns the probability that a photon is detected at time `t`.
 *
 * The probability distribution is the sum of three different components: dark
 * noise, indirect light, and direct light. The dark noise is assumed to be
 * constant in time. The direct light is assumed to be a delta function around
 * the times `ts`, where each element of `ts` comes from a different particle.
 * This assumption is probably valid for particles like muons which don't
 * scatter much, and the hope is that it is *good enough* for electrons too.
 * The probability distribution for indirect light is assumed to be a step
 * function lasting 2*PSUP_REFLECTION_TIME past some time `tmean`.
 *
 * Note: Initially I had the indirect light be a step function which only
 * lasted PSUP_REFLECTION_TIME (which is set to the time it takes light to
 * cross from one side of the PSUP to the other) because I thought that this
 * represented the maximum amount of time it took for light to traverse the
 * detector (and the PMT hit time plot for a laserball run has a bump after the
 * main peak which lasts for about 80 ns). However, I later realized that for
 * events near the edge of the detector, like say a flasher or muon, the
 * reflected light from the other side of the detector will take twice as long.
 * So, now we use twice the PSUP reflection time.
 *
 * In the future it might be cool to experiment with new ways of defining the
 * time PDF. For example, we could get a much more accurate approximation for
 * the reflected light time distribution by using something like a kernel
 * density estimator and for each PMT we could loop over the other PMTs and add
 * a point to our PDF at the light travel time between the PMTs weighted by the
 * second PMT's charge. I think currently this would be way too slow, and it's
 * not obvious how much it would help.
 *
 * The probability returned is calculated by taking the sum of these three
 * components and convolving it with a gaussian with standard deviation `sigma`
 * which should typically be the PMT transit time spread. */
double time_pdf(double t, double mu_noise, double mu_indirect, double *mu, size_t n, double *ts, double tmean, double *ts_sigma)
{
    size_t i;
    double p, mu_total;

    p = mu_noise/GTVALID + mu_indirect*(erf((t-tmean)/(sqrt(2)*PMT_TTS))-erf((t-tmean-2*PSUP_REFLECTION_TIME)/(sqrt(2)*PMT_TTS)))/(4*PSUP_REFLECTION_TIME);

    mu_total = mu_noise + mu_indirect;
    for (i = 0; i < n; i++) {
        if (mu[i] == 0.0) continue;
        p += mu[i]*norm(t,ts[i],ts_sigma[i]);
        mu_total += mu[i];
    }

    return p/mu_total;
}

/* Returns the first order statistic for observing a PMT hit at time `t` given
 * `n` hits.
 *
 * The first order statistic is computed from the probability distribution
 * above. It's not obvious whether one should take the first order statistic
 * before or after convolving with the PMT transit time spread. Since at least
 * some of the transit time spread in SNO comes from the different transit
 * times across the face of the PMT, it seems better to convolve first which is
 * what we do here. In addition, the problem is not analytically tractable if
 * you do things the other way around.
 *
 * Note: Technically we should include a final convolution representing both
 * the ECA+PCA uncertainty and the digitization noise. I was initially worried
 * about this causing an issue because as you take higher and higher order
 * statistics the width of the time PDF becomes smaller and smaller and these
 * other uncertainties may become relevant. However, the maximum number of PE
 * we should be calculating the time PDF for is when QLX rails which is at
 * approximately:
 *
 *     (4096-600)*12/30 ~= 1000
 *
 * and the width at that point is ~0.6 ns. The digitization noise is
 * approximately 4096/400.0 ~= 0.1 ns and according to Javi:
 *
 * > The ECA+PCA uncertainties are negligible with respect to the TTS.
 * > Basically, the width of the prompt peak for N16 calibration events (mainly
 * > SPEs) is 1.6ns, compatible with the PMT TTS.
 * >
 * > That said, long ago I estimated the precision of the ECA calibration to be
 * > about 0.4ns. The PCA delays are pretty stable and precisely measured, so
 * > probably negligible compared to the ECA uncertainties.
 *
 * So therefore, even at the highest possible charge we should still be
 * dominated by the width of the PDF.
 *
 * It is probably too expensive to try and actually calculate another
 * convolution at this point since we'd have to do it numerically. I think a
 * better option would just be to cut off the first order statistic at some
 * point, i.e. to calculate:
 *
 *    logp[j] += log_pt(ev->pmt_hits[i].t, j > MAX_PE_TIME_PDF ? MAX_PE_TIME_PDF : j, mu_noise, mu_indirect_total, &mu[i][0][0], n*3, &ts[i][0][0], ts[i][0][0], &ts_sigma[i][0][0]);
 *
 */
double log_pt(double t, size_t n, double mu_noise, double mu_indirect, double *mu, size_t n2, double *ts, double tmean, double *ts_sigma)
{
    if (n == 1)
        return ln(n) + log(time_pdf(t,mu_noise,mu_indirect,mu,n2,ts,tmean,ts_sigma));
    else
        return ln(n) + (n-1)*log1p(-time_cdf(t,mu_noise,mu_indirect,mu,n2,ts,tmean,ts_sigma)) + log(time_pdf(t,mu_noise,mu_indirect,mu,n2,ts,tmean,ts_sigma));
}

static void integrate_path_shower(particle *p, double *x, double *w, double T0, double *pos0, double *dir0, int pmt, size_t n, double *mu_direct, double *mu_indirect, double *time, double *sigma)
{
    size_t i;
    double pos[3], t, q, r, tmp, q_sum, r_sum, t_sum, t2_sum;

    q_sum = 0.0;
    r_sum = 0.0;
    t_sum = 0.0;
    t2_sum = 0.0;
    for (i = 0; i < n; i++) {
        pos[0] = pos0[0] + x[i]*dir0[0];
        pos[1] = pos0[1] + x[i]*dir0[1];
        pos[2] = pos0[2] + x[i]*dir0[2];

        get_expected_charge_shower(p, pos, dir0, pmt, &q, &r, &t);

        t += x[i]/SPEED_OF_LIGHT;

        q_sum += q*w[i];
        r_sum += r*w[i];
        t_sum += t*q*w[i];
        t2_sum += t*t*q*w[i];
    }

    *mu_direct = q_sum;
    *mu_indirect = r_sum;

    if (*mu_direct == 0.0) {
        *time = 0.0;
        *sigma = PMT_TTS;
    } else {
        *time = t_sum/(*mu_direct);

        /* Variance in the time = E(t^2) - E(t)^2. */
        tmp = t2_sum/(*mu_direct) - (*time)*(*time);

        if (tmp >= 0) {
            *sigma = sqrt(tmp + PMT_TTS*PMT_TTS);
        } else {
            /* This should never happen but does occasionally due to floating
             * point rounding error. */
            *sigma = PMT_TTS;
        }
    }
}

static void integrate_path(path *p, int pmt, double *mu_direct, double *mu_indirect, double *time)
{
    size_t i;
    double dir[3], pos[3], t, theta0, beta, q, r, q_sum, r_sum, t_sum, dx;

    q_sum = 0.0;
    r_sum = 0.0;
    t_sum = 0.0;
    for (i = 0; i < p->len; i++) {
        pos[0] = p->x[i];
        pos[1] = p->y[i];
        pos[2] = p->z[i];

        dir[0] = p->dx[i];
        dir[1] = p->dy[i];
        dir[2] = p->dz[i];

        beta = p->beta[i];

        if (p->n > 0) {
            theta0 = p->theta0;
        } else {
            theta0 = fmax(MIN_THETA0,p->theta0*sqrt(p->s[i]));
            theta0 = fmin(MAX_THETA0,theta0);
        }

        get_expected_charge(beta, theta0, pos, dir, pmt, &q, &r, &t);

        t += p->t[i];

        if (i == 0 || i == p->len - 1) {
            q_sum += q;
            r_sum += r;
            t_sum += t*q;
        } else {
            q_sum += 2*q;
            r_sum += 2*r;
            t_sum += 2*t*q;
        }
    }

    dx = p->s[1] - p->s[0];
    *mu_direct = q_sum*dx*0.5;
    *mu_indirect = r_sum*dx*0.5;
    *time = t_sum*dx*0.5;
}

static double get_total_charge_approx(double beta0, double *pos, double *dir, particle *p, int i, double smax, double theta0, double *t, double *mu_reflected, double cos_theta_cerenkov, double sin_theta_cerenkov)
{
    /* Returns the approximate expected number of photons seen by PMT `i` using
     * an analytic formula.
     *
     * To come up with an analytic formula for the expected number of photons,
     * it was necessary to make the following approximations:
     *
     * - the index of refraction is constant
     * - the particle track is a straight line
     * - the integral along the particle track is dominated by the gaussian
     *   term describing the angular distribution of the light
     *
     * With these approximations and a few other ones (like using a Taylor
     * expansion for the distance to the PMT), it is possible to pull
     * everything out of the track integral and assume it's equal to it's value
     * along the track where the exponent of the gaussian dominates.
     *
     * The point along the track where the exponent dominates is calculated by
     * finding the point along the track where the angle between the track
     * direction and the PMT is equal to the Cerenkov angle. If this point is
     * before the start of the track, we use the start of the track and if it's
     * past the end of `smax` we use `smax`.
     *
     * Since the integral over the track also contains a term like
     * (1-1/(beta**2*n**2)) which is not constant near the end of the track, it
     * is necessary to define `smax` as the point along the track where the
     * particle velocity drops below some threshold.
     *
     * `smax` is currently calculated as the point where the particle velocity
     * drops to 0.8 times the speed of light. */
    double pmt_dir[3], tmp[3], R, cos_theta, x, z, s, a, b, beta, E, mom, T, omega, sin_theta, f, cos_theta_pmt, l_h2o, l_d2o, f_reflec, charge, prob, frac, prob_abs, prob_sct;

    /* First, we find the point along the track where the PMT is at the
     * Cerenkov angle. */
    SUB(pmt_dir,pmts[i].pos,pos);
    /* Compute the distance to the PMT. */
    R = NORM(pmt_dir);

    normalize(pmt_dir);

    /* Calculate the cosine of the angle between the track direction and the
     * vector to the PMT at the start of the track. */
    cos_theta = DOT(dir,pmt_dir);
    sin_theta = sqrt(1-pow(cos_theta,2));

    /* Now, we compute the distance along the track where the PMT is at the
     * Cerenkov angle.
     *
     * Note: This formula comes from using the "Law of sines" where the three
     * vertices of the triangle are the starting position of the track, the
     * point along the track that we want to find, and the PMT position. */
    if (sin_theta_cerenkov != 0)
        s = R*(sin_theta_cerenkov*cos_theta - cos_theta_cerenkov*sin_theta)/sin_theta_cerenkov;
    else
        s = R*cos_theta;

    /* Make sure that the point is somewhere along the track between 0 and
     * `smax`. */
    if (s < 0) s = 0.0;
    else if (s > smax) s = smax;

    /* Compute the vector from the point `s` along the track to the PMT. */
    tmp[0] = pmts[i].pos[0] - (pos[0] + s*dir[0]);
    tmp[1] = pmts[i].pos[1] - (pos[1] + s*dir[1]);
    tmp[2] = pmts[i].pos[2] - (pos[2] + s*dir[2]);

    /* To do the integral analytically, we expand the distance to the PMT along
     * the track in a Taylor series around `s0`, i.e.
     *
     *     r(s) = a + b*(s-s0)
     *
     * Here, we calculate `a` which is the distance to the PMT at the point
     * `s`. */
    a = NORM(tmp);

    /* `z` is the distance to the PMT projected onto the track direction. */
    z = R*cos_theta;

    /* `x` is the perpendicular distance from the PMT position to the track. */
    x = R*sqrt(1-pow(cos_theta,2));

    /* `b` is the second coefficient in the Taylor expansion. */
    b = (s-z)/a;

    /* Compute the kinetic energy at the point `s` along the track. */
    T = particle_get_energy(s,p);

    /* Calculate the particle velocity at the point `s`. */
    E = T + p->mass;
    mom = sqrt(E*E - p->mass*p->mass);
    beta = mom/E;

    *t = 0.0;
    *mu_reflected = 0.0;
    if (beta < 1/get_avg_index_d2o()) return 0.0;

    /* `prob` is the number of photons emitted per cm by the particle at a
     * distance `s` along the track. */
    prob = get_probability2(beta);

    /* Compute the position of the particle at a distance `s` along the track. */
    tmp[0] = pos[0] + s*dir[0];
    tmp[1] = pos[1] + s*dir[1];
    tmp[2] = pos[2] + s*dir[2];

    SUB(pmt_dir,pmts[i].pos,tmp);

    normalize(pmt_dir);

    cos_theta_pmt = DOT(pmt_dir,pmts[i].normal);

    *t = 0.0;
    *mu_reflected = 0.0;
    if (cos_theta_pmt > 0) return 0.0;

    /* Calculate the sine of the angle between the track direction and the PMT
     * at the position `s` along the track. */
    cos_theta = DOT(dir,pmt_dir);
    sin_theta = sqrt(1-pow(cos_theta,2));

    /* Get the solid angle of the PMT at the position `s` along the track. */
    omega = get_solid_angle_fast(tmp,pmts[i].pos,pmts[i].normal,PMT_RADIUS);

    theta0 = fmax(theta0*sqrt(s),MIN_THETA0);

    frac = sqrt(2)*get_avg_index_d2o()*x*beta0*theta0;

    f = get_weighted_pmt_response(-cos_theta_pmt);
    f_reflec = get_weighted_pmt_reflectivity(-cos_theta_pmt);

    get_path_length(tmp,pmts[i].pos,AV_RADIUS,&l_d2o,&l_h2o);

    prob_abs = 1.0 - get_fabs_d2o(l_d2o)*get_fabs_h2o(l_h2o)*get_fabs_acrylic(AV_THICKNESS);
    prob_sct = 1.0 - get_fsct_d2o(l_d2o)*get_fsct_h2o(l_h2o)*get_fsct_acrylic(AV_THICKNESS);

    /* Assume the particle is travelling at the speed of light. */
    *t = s/SPEED_OF_LIGHT + l_d2o*get_avg_index_d2o()/SPEED_OF_LIGHT + l_h2o*get_avg_index_h2o()/SPEED_OF_LIGHT;

    charge = get_avg_index_d2o()*x*beta0*prob*(1/sin_theta)*omega*(erf((a+b*(smax-s)+get_avg_index_d2o()*(smax-z)*beta0)/frac) + erf((-a+b*s+get_avg_index_d2o()*z*beta0)/frac))/(b+get_avg_index_d2o()*beta0)/(4*M_PI);

    /* Add expected number of photons from electromagnetic shower. */
    if (p->shower_photons > 0)
        charge += get_weighted_quantum_efficiency()*p->shower_photons*electron_get_angular_pdf(cos_theta,p->a,p->b,1.0/get_avg_index_d2o())*omega/(2*M_PI);
    if (p->delta_ray_photons > 0)
        charge += get_weighted_quantum_efficiency()*p->delta_ray_photons*electron_get_angular_pdf_delta_ray(cos_theta,p->delta_ray_a,p->delta_ray_b,1.0/get_avg_index_d2o())*omega/(2*M_PI);

    /* Note: We multiply the amount of Rayleigh scattered light here by 2 since
     * we are only calculating the fraction of Rayleigh scattered light that
     * would hit the PMT and the coverage in SNO+ is about 50%. */
    *mu_reflected = (1.0-prob_abs)*(1.0-prob_sct)*f_reflec*charge + 2*prob_sct*charge;

    return (1.0-prob_abs)*(1.0-prob_sct)*f*charge;
}

typedef struct betaRootParams {
    particle *p;
    double beta_min;
} betaRootParams;

static double beta_root(double x, void *params)
{
    /* Function used to find at what point along a track a particle crosses
     * some threshold in beta. */
    double T, E, mom, beta, tmp;
    betaRootParams *pars;

    pars = (betaRootParams *) params;

    T = particle_get_energy(x, pars->p);

    /* Calculate total energy */
    E = T + pars->p->mass;

    tmp = E*E - pars->p->mass*pars->p->mass;

    if (tmp <= 0) {
        beta = 0.0;
    } else {
        mom = sqrt(tmp);
        beta = mom/E;
    }

    return beta - pars->beta_min;
}

static int get_smax(particle *p, double beta_min, double range, double *smax)
{
    /* Find the point along the track at which the particle's velocity drops to
     * `beta_min`. */
    int status;
    betaRootParams pars;
    gsl_root_fsolver *s;
    gsl_function F;
    int iter = 0, max_iter = 100;
    double r, x_lo, x_hi;

    s = gsl_root_fsolver_alloc(gsl_root_fsolver_brent);

    pars.p = p;
    pars.beta_min = beta_min;

    F.function = &beta_root;
    F.params = &pars;

    gsl_root_fsolver_set(s, &F, 0.0, range);

    do {
        iter++;
        status = gsl_root_fsolver_iterate(s);
        r = gsl_root_fsolver_root(s);
        x_lo = gsl_root_fsolver_x_lower(s);
        x_hi = gsl_root_fsolver_x_upper(s);

        /* Find the root to within 1 mm. */
        status = gsl_root_test_interval(x_lo, x_hi, 1e-10, 0);

        if (status == GSL_SUCCESS) break;
    } while (status == GSL_CONTINUE && iter < max_iter);

    gsl_root_fsolver_free(s);

    *smax = r;

    return status;
}

static double guess_time(double *pos, double *dir, double *pmt_pos, double smax, double cos_theta_cerenkov, double sin_theta_cerenkov)
{
    /* Returns an approximate time at which a PMT is most likely to get hit
     * from Cerenkov light.
     *
     * To do this, we try to compute the distance along the track where the PMT
     * is at the Cerenkov angle. */
    double pmt_dir[3], tmp[3];
    double R, cos_theta, sin_theta, s, l_d2o, l_h2o;

    /* First, we find the point along the track where the PMT is at the
     * Cerenkov angle. */
    SUB(pmt_dir,pmt_pos,pos);
    /* Compute the distance to the PMT. */
    R = NORM(pmt_dir);
    normalize(pmt_dir);

    /* Calculate the cosine of the angle between the track direction and the
     * vector to the PMT at the start of the track. */
    cos_theta = DOT(dir,pmt_dir);
    sin_theta = sqrt(1-pow(cos_theta,2));

    /* Now, we compute the distance along the track where the PMT is at the
     * Cerenkov angle.
     *
     * Note: This formula comes from using the "Law of sines" where the three
     * vertices of the triangle are the starting position of the track, the
     * point along the track that we want to find, and the PMT position. */
    if (sin_theta_cerenkov != 0)
        s = R*(sin_theta_cerenkov*cos_theta - cos_theta_cerenkov*sin_theta)/sin_theta_cerenkov;
    else
        s = R*cos_theta;

    /* Make sure that the point is somewhere along the track between 0 and
     * `smax`. */
    if (s < 0) s = 0.0;
    else if (s > smax) s = smax;

    /* Compute the position of the particle at a distance `s` along the track. */
    tmp[0] = pos[0] + s*dir[0];
    tmp[1] = pos[1] + s*dir[1];
    tmp[2] = pos[2] + s*dir[2];

    SUB(pmt_dir,pmt_pos,tmp);

    get_path_length(tmp,pmt_pos,AV_RADIUS,&l_d2o,&l_h2o);

    /* Assume the particle is travelling at the speed of light. */
    return s/SPEED_OF_LIGHT + l_d2o*get_avg_index_d2o()/SPEED_OF_LIGHT + l_h2o*get_avg_index_h2o()/SPEED_OF_LIGHT;
}

static double getKineticEnergy(double x, void *p)
{
    return particle_get_energy(x, (particle *) p);
}

double nll_best(event *ev)
{
    /* Returns the negative log likelihood of the "best hypothesis" for the event `ev`.
     *
     * By "best hypothesis" I mean we restrict the model to assign a single
     * mean number of PE for each PMT in the event assuming that the number of
     * PE hitting each PMT is poisson distributed. In addition, the model picks
     * a single time for the light to arrive with the PDF being given by a sum
     * of dark noise and a Gaussian around this time with a width equal to the
     * single PE transit time spread.
     *
     * This calculation is intended to be used as a goodness of fit test for
     * the fitter by computing a likelihood ratio between the best fit
     * hypothesis and this ideal case. See Chapter 9 in Jayne's "Probability
     * Theory: The Logic of Science" for more details. */
    size_t i, j, nhit;
    static double logp[MAX_PE], nll[MAX_PMTS], mu[MAX_PMTS], ts[MAX_PMTS], ts_sigma;
    double log_mu, max_logp, mu_noise, mu_indirect_total, min_ratio;

    mu_noise = DARK_RATE*GTVALID*1e-9;

    /* Compute the "best" number of expected PE for each PMT. */
    for (i = 0; i < MAX_PMTS; i++) {
        if (ev->pmt_hits[i].flags || pmts[i].pmt_type != PMT_NORMAL) continue;

        if (!ev->pmt_hits[i].hit) {
            /* If the PMT wasn't hit we assume the expected number of PE just
             * comes from noise hits. */
            mu[i] = mu_noise;
            continue;
        }

        /* Set the expected number of PE to whatever maximizes P(q|mu), i.e.
         *
         *     mu[i] = max(p(q|mu))
         *
         */
        mu[i] = get_most_likely_mean_pe(ev->pmt_hits[i].q);
        /* We want to estimate the mean time which is most likely to produce a
         * first order statistic of the actual hit time given there were
         * approximately mu[i] PE. As far as I know there are no closed form
         * solutions for the first order statistic of a Gaussian, but there is
         * an approximate form in the paper "Expected Normal Order Statistics
         * (Exact and Approximate)" by J. P. Royston which is what I use here.
         *
         * I found this via the stack exchange question here:
         * https://stats.stackexchange.com/questions/9001/approximate-order-statistics-for-normal-random-variables. */
        double alpha = 0.375;
        ts[i] = ev->pmt_hits[i].t - gsl_cdf_ugaussian_Pinv((1-alpha)/(mu[i]-2*alpha+1))*PMT_TTS;
    }

    ts_sigma = PMT_TTS;

    mu_indirect_total = 0.0;

    min_ratio = MIN_RATIO;

    /* Now, we actually compute the negative log likelihood for the best
     * hypothesis.
     *
     * Currently this calculation is identical to the one in nll() so it should
     * probably be made into a function. */
    nhit = 0;
    for (i = 0; i < MAX_PMTS; i++) {
        if (ev->pmt_hits[i].flags || pmts[i].pmt_type != PMT_NORMAL) continue;

        log_mu = log(mu[i]);

        if (ev->pmt_hits[i].hit) {
            for (j = 1; j < MAX_PE; j++) {
                logp[j] = get_log_pq(ev->pmt_hits[i].q,j) + get_log_phit(j) - mu[i] + j*log_mu - lnfact(j) + log_pt(ev->pmt_hits[i].t, j, mu_noise, mu_indirect_total, &mu[i], 1, &ts[i], ts[i], &ts_sigma);

                if (j == 1 || logp[j] > max_logp) max_logp = logp[j];

                if (logp[j] - max_logp < min_ratio*ln(10)) {
                    j++;
                    break;
                }
            }

            nll[nhit++] = -logsumexp(logp+1, j-1);
        } else {
            logp[0] = -mu[i];
            for (j = 1; j < MAX_PE_NO_HIT; j++) {
                logp[j] = get_log_pmiss(j) - mu[i] + j*log_mu - lnfact(j);
            }
            nll[nhit++] = -logsumexp(logp, MAX_PE_NO_HIT);
        }
    }

    return kahan_sum(nll,nhit);
}

/* Returns the negative log likelihood for event `ev` given a particle with id
 * `id`, initial kinetic energy `T0`, position `pos`, direction `dir` and
 * initial time `t0`.
 *
 * `dx` is the distance the track is sampled at to compute the likelihood.
 *
 * `ns` is the number of points to use when calculating the number of photons
 * from shower and delta ray particles.
 *
 * If `fast` is nonzero, returns an approximate faster version of the
 * likelihood.
 *
 * `z1` and `z2` should be arrays of length `n` and represent coefficients in
 * the Karhunen Loeve expansion of the track path. These are only used when
 * `fast` is zero. */
double nll(event *ev, vertex *v, size_t n, double dx, int ns, const int fast, int charge_only, int hit_only)
{
    size_t i, j, k, nhit;
    static double logp[MAX_PE], nll[MAX_PMTS], tmp[2];
    double range, theta0, E0, p0, beta0, smax, log_mu, max_logp;
    particle *p;
    double cos_theta_cerenkov, sin_theta_cerenkov;
    double logp_path;
    double mu_reflected;
    path *path;

    /* Array representing the expected number of photons at each PMT for each
     * vertex. The last axis represents the contributions from direct, shower,
     * and delta ray photons respectively, i.e.
     *
     *     mu[0][2][0] - expected number of direct photons from vertex 2 at PMT 0
     *     mu[0][2][1] - expected number of shower photons from vertex 2 at PMT 0
     *     mu[0][2][2] - expected number of delta ray photons from vertex 2 at PMT 0
     *     ...
     *     etc.
     *
     */
    static double mu[MAX_PMTS][MAX_VERTICES][3];
    /* Array representing the average time of arrival at each PMT for each
     * vertex. See above for the how the array is indexed. */
    static double ts[MAX_PMTS][MAX_VERTICES][3];
    /* Array representing the standard deviation of the time at each PMT for
     * each vertex. See above for the how the array is indexed. */
    static double ts_sigma[MAX_PMTS][MAX_VERTICES][3];
    static double mu_sum[MAX_PMTS];
    double mu_noise, mu_indirect[MAX_VERTICES], mu_indirect_total;

    /* Points and weights to integrate the shower and delta ray photon
     * distributions. */
    static double x[MAX_NPOINTS], w[MAX_NPOINTS];

    double result;

    double min_ratio;

    size_t npoints;

    double log_pt_fast;

    double distance_to_psup;

    double q_indirect;

    double R, cos_gamma, sin_gamma;

    double pmt_dir[3];

    double cerenkov_range;

    if (n > MAX_VERTICES) {
        fprintf(stderr, "maximum number of vertices is %i\n", MAX_VERTICES);
        exit(1);
    }

    if (ns > MAX_NPOINTS) {
        fprintf(stderr, "maximum number of points is %i\n", MAX_NPOINTS);
        exit(1);
    }

    for (i = 0; i < LEN(mu_indirect); i++) {
        mu_indirect[i] = 0.0;
    }

    /* Initialize static arrays. */
    for (i = 0; i < MAX_PMTS; i++) {
        mu_sum[i] = 0.0;
        for (j = 0; j < n; j++) {
            for (k = 0; k < 3; k++) {
                mu[i][j][k] = 0.0;
                ts[i][j][k] = 0.0;
                ts_sigma[i][j][k] = PMT_TTS;
            }
        }
    }

    for (j = 0; j < n; j++) {
        /* Find the distance from the particle's starting position to the PSUP.
         *
         * We calculate this here to make sure that we don't integrate outside
         * of the PSUP because otherwise there is no code to model the fact
         * that the PSUP is optically separated from the water outside. */
        if (NORM(v[j].pos) > PSUP_RADIUS || !intersect_sphere(v[j].pos,v[j].dir,PSUP_RADIUS,&distance_to_psup)) {
            /* If the particle is outside the PSUP or it doesn't intersect the
             * PSUP we just assume it produces no light. */
            fprintf(stderr, "particle doesn't intersect PSUP!\n");
            continue;
        }

        if (fast)
            p = particle_init(v[j].id, v[j].T0, 1000);
        else
            p = particle_init(v[j].id, v[j].T0, 10000);

        range = p->range;

        /* Calculate total energy */
        E0 = v[j].T0 + p->mass;
        p0 = sqrt(E0*E0 - p->mass*p->mass);
        beta0 = p0/E0;

        /* FIXME: is this formula valid for muons? */
        theta0 = get_scattering_rms(range/2,p0,beta0,1.0)/sqrt(range/2);

        /* Compute the distance at which the particle falls below the cerenkov
         * threshold. */
        if (beta0 > 1/get_avg_index_d2o())
            get_smax(p, 1/get_avg_index_d2o(), range, &cerenkov_range);
        else
            cerenkov_range = range;

        if (distance_to_psup < cerenkov_range)
            cerenkov_range = distance_to_psup;

        /* Number of points to sample along the particle track. */
        npoints = (size_t) (cerenkov_range/dx + 0.5);

        if (npoints < MIN_NPOINTS) npoints = MIN_NPOINTS;

        if (!fast)
            path = path_init(v[j].pos, v[j].dir, v[j].T0, cerenkov_range, npoints, theta0, getKineticEnergy, p, v[j].z1, v[j].z2, v[j].n, p->mass);

        if (beta0 > BETA_MIN)
            get_smax(p, BETA_MIN, range, &smax);
        else
            smax = 0.0;

        /* Compute the Cerenkov angle at the start of the track.
         *
         * These are computed at the beginning of this function and then passed to
         * the different functions to avoid recomputing them on the fly. */
        cos_theta_cerenkov = 1/(get_avg_index_d2o()*beta0);
        sin_theta_cerenkov = sqrt(1-pow(cos_theta_cerenkov,2));

        mu_indirect[j] = 0.0;
        for (i = 0; i < MAX_PMTS; i++) {
            /* Note: We loop over all normal PMTs here, even ones that are
             * flagged since they will contribute to the reflected and
             * scattered light. */
            if (pmts[i].pmt_type != PMT_NORMAL) continue;

            /* Skip PMTs which weren't hit when doing the "fast" likelihood
             * calculation. */
            if (hit_only && !ev->pmt_hits[i].hit) continue;

            if (fast) {
                mu[i][j][0] = get_total_charge_approx(beta0, v[j].pos, v[j].dir, p, i, smax, theta0, &ts[i][j][0], &mu_reflected, cos_theta_cerenkov, sin_theta_cerenkov);
                ts[i][j][0] += v[j].t0;
                mu_indirect[j] += mu_reflected;
                continue;
            }

            integrate_path(path, i, &mu[i][j][0], &q_indirect, &result);
            mu_indirect[j] += q_indirect;

            if (mu[i][j][0] > 1e-9) {
                ts[i][j][0] = v[j].t0 + result/mu[i][j][0];
            } else {
                /* If the expected number of PE is very small, our estimate of
                 * the time can be crazy since the error in the total charge is
                 * in the denominator. Therefore, we estimate the time using
                 * the same technique as in get_total_charge_approx(). See that
                 * function for more details.
                 *
                 * Note: I don't really know how much this affects the likelihood.
                 * I should test it to see if we can get away with something even
                 * simpler (like just computing the distance from the start of the
                 * track to the PMT). */
                ts[i][j][0] = v[j].t0 + guess_time(v[j].pos,v[j].dir,pmts[i].pos,smax,cos_theta_cerenkov,sin_theta_cerenkov);
            }

            /* Calculate the distance and angle to the PMT from the starting
             * position. These are used to convert between the particle's x
             * position along the straight track and the cosine of the angle
             * with the PMT. */
            SUB(pmt_dir,pmts[i].pos,v[j].pos);

            R = NORM(pmt_dir);

            cos_gamma = DOT(v[j].dir,pmt_dir)/R;
            sin_gamma = sqrt(1-cos_gamma*cos_gamma);

            if (p->shower_photons > 0) {
                get_shower_weights(p,distance_to_psup,x,w,ns,R,cos_gamma,sin_gamma);
                integrate_path_shower(p,x,w,v[j].T0,v[j].pos,v[j].dir,i,ns,&mu[i][j][1],&q_indirect,&result,&ts_sigma[i][j][1]);
                mu_indirect[j] += q_indirect;
                ts[i][j][1] = v[j].t0 + result;
            }

            if (p->delta_ray_photons > 0 && !get_delta_ray_weights(p,range,distance_to_psup,x,w,ns,R,cos_gamma,sin_gamma)) {
                integrate_path_shower(p,x,w,v[j].T0,v[j].pos,v[j].dir,i,ns,&mu[i][j][2],&q_indirect,&result,&ts_sigma[i][j][2]);
                mu_indirect[j] += q_indirect;
                ts[i][j][2] = v[j].t0 + result;
            }
        }

        if (!fast) {
            path_free(path);
        }

        particle_free(p);
    }

    mu_noise = DARK_RATE*GTVALID*1e-9;

    mu_indirect_total = 0.0;
    for (j = 0; j < n; j++) {
        mu_indirect_total += mu_indirect[j]*CHARGE_FRACTION/10000.0;
    }

    /* Compute the expected number of photons reaching each PMT by adding up
     * the contributions from the noise hits and the direct, indirect, and
     * shower light. */
    for (i = 0; i < MAX_PMTS; i++) {
        if (ev->pmt_hits[i].flags || pmts[i].pmt_type != PMT_NORMAL) continue;

        /* Skip PMTs which weren't hit when doing the "fast" likelihood
         * calculation. */
        if (hit_only && !ev->pmt_hits[i].hit) continue;

        mu_sum[i] = mu_indirect_total + mu_noise;
        for (j = 0; j < n; j++) {
            for (k = 0; k < 3; k++) {
                mu_sum[i] += mu[i][j][k];
            }
        }
    }

    if (fast)
        min_ratio = MIN_RATIO_FAST;
    else
        min_ratio = MIN_RATIO;

    /* Now, we actually compute the negative log likelihood. */
    nhit = 0;
    for (i = 0; i < MAX_PMTS; i++) {
        if (ev->pmt_hits[i].flags || pmts[i].pmt_type != PMT_NORMAL) continue;

        /* Skip PMTs which weren't hit when doing the "fast" likelihood
         * calculation. */
        if (hit_only && !ev->pmt_hits[i].hit) continue;

        log_mu = log(mu_sum[i]);

        if (fast)
            log_pt_fast = log_pt(ev->pmt_hits[i].t, 1, mu_noise, mu_indirect_total, &mu[i][0][0], n*3, &ts[i][0][0], ts[i][0][0], &ts_sigma[i][0][0]);

        if (ev->pmt_hits[i].hit) {
            for (j = 1; j < MAX_PE; j++) {
                logp[j] = get_log_pq(ev->pmt_hits[i].q,j) + get_log_phit(j) - mu_sum[i] + j*log_mu - lnfact(j);

                if (!charge_only) {
                    if (fast)
                        logp[j] += log_pt_fast;
                    else
                        logp[j] += log_pt(ev->pmt_hits[i].t, j, mu_noise, mu_indirect_total, &mu[i][0][0], n*3, &ts[i][0][0], ts[i][0][0], &ts_sigma[i][0][0]);
                }

                if (j == 1 || logp[j] > max_logp) max_logp = logp[j];

                if (logp[j] - max_logp < min_ratio*ln(10)) {
                    j++;
                    break;
                }
            }

            /* Now, we include the probability that the channel is miscalibrated as:
             *
             *     P(q,t) = P(q,t|calibrated)P(calibrated) + P(q,t|miscalibrated)P(miscalibrated)
             *
             * For P(q,t|miscalibrated) we just assume a uniform distribution
             * over all 4096 possible values. */
            tmp[0] = logsumexp(logp+1, j-1) + log(1-P_MISCALIBRATION);
            tmp[1] = log(1/4096.0) + log(1/4096.0) + log(P_MISCALIBRATION);
            nll[nhit++] = -logsumexp(tmp, 2);
        } else {
            logp[0] = -mu_sum[i];
            if (fast) {
                nll[nhit++] = -logp[0];
                continue;
            }
            for (j = 1; j < MAX_PE_NO_HIT; j++) {
                logp[j] = get_log_pmiss(j) - mu_sum[i] + j*log_mu - lnfact(j);
            }

            /* Now, we include the probability that the channel is miscalibrated as:
             *
             *     P(not hit) = P(not hit|calibrated)P(calibrated) + P(not hit|miscalibrated)P(miscalibrated)
             *
             * where by miscalibrated here we really mean a PMT that wasn't
             * read out or included in the event for whatever reason. */
            tmp[0] = logsumexp(logp, MAX_PE_NO_HIT) + log(1-P_MISCALIBRATION);
            tmp[1] = log(P_MISCALIBRATION);
            nll[nhit++] = -logsumexp(tmp, 2);
        }
    }

    logp_path = 0.0;
    for (j = 0; j < n; j++)
        for (i = 0; i < v[j].n; i++)
            logp_path += log_norm(v[j].z1[i],0,1) + log_norm(v[j].z2[i],0,1);

    /* Add up the negative log likelihood terms from each PMT. I use a kahan
     * sum here instead of just summing all the values to help prevent round
     * off error. I actually don't think this makes any difference here since
     * the numbers are all of the same order of magnitude, so I should actually
     * test to see if it makes any difference. */
    return kahan_sum(nll,nhit) - logp_path;
}