aboutsummaryrefslogtreecommitdiff
path: root/src/dict.c
diff options
context:
space:
mode:
Diffstat (limited to 'src/dict.c')
-rw-r--r--src/dict.c1219
1 files changed, 1219 insertions, 0 deletions
diff --git a/src/dict.c b/src/dict.c
new file mode 100644
index 0000000..42d9459
--- /dev/null
+++ b/src/dict.c
@@ -0,0 +1,1219 @@
+/* Hash Tables Implementation.
+ *
+ * This file implements in memory hash tables with insert/del/replace/find/
+ * get-random-element operations. Hash tables will auto resize if needed
+ * tables of power of two in size are used, collisions are handled by
+ * chaining. See the source code for more information... :)
+ *
+ * Copyright (c) 2006-2012, Salvatore Sanfilippo <antirez at gmail dot com>
+ * All rights reserved.
+ *
+ * Redistribution and use in source and binary forms, with or without
+ * modification, are permitted provided that the following conditions are met:
+ *
+ * * Redistributions of source code must retain the above copyright notice,
+ * this list of conditions and the following disclaimer.
+ * * Redistributions in binary form must reproduce the above copyright
+ * notice, this list of conditions and the following disclaimer in the
+ * documentation and/or other materials provided with the distribution.
+ * * Neither the name of Redis nor the names of its contributors may be used
+ * to endorse or promote products derived from this software without
+ * specific prior written permission.
+ *
+ * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+ * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+ * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
+ * ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE
+ * LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
+ * CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
+ * SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
+ * INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
+ * CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
+ * ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
+ * POSSIBILITY OF SUCH DAMAGE.
+ */
+
+#include "fmacros.h"
+
+#include <stdio.h>
+#include <stdlib.h>
+#include <stdint.h>
+#include <string.h>
+#include <stdarg.h>
+#include <limits.h>
+#include <sys/time.h>
+
+#include "dict.h"
+#include <assert.h>
+
+/* Using dictEnableResize() / dictDisableResize() we make possible to
+ * enable/disable resizing of the hash table as needed. This is very important
+ * for Redis, as we use copy-on-write and don't want to move too much memory
+ * around when there is a child performing saving operations.
+ *
+ * Note that even when dict_can_resize is set to 0, not all resizes are
+ * prevented: a hash table is still allowed to grow if the ratio between
+ * the number of elements and the buckets > dict_force_resize_ratio. */
+static int dict_can_resize = 1;
+static unsigned int dict_force_resize_ratio = 5;
+
+/* -------------------------- private prototypes ---------------------------- */
+
+static int _dictExpandIfNeeded(dict *ht);
+static unsigned long _dictNextPower(unsigned long size);
+static long _dictKeyIndex(dict *ht, const void *key, uint64_t hash, dictEntry **existing);
+static int _dictInit(dict *ht, dictType *type, void *privDataPtr);
+
+/* -------------------------- hash functions -------------------------------- */
+
+static uint8_t dict_hash_function_seed[16];
+
+void dictSetHashFunctionSeed(uint8_t *seed) {
+ memcpy(dict_hash_function_seed,seed,sizeof(dict_hash_function_seed));
+}
+
+uint8_t *dictGetHashFunctionSeed(void) {
+ return dict_hash_function_seed;
+}
+
+/* The default hashing function uses SipHash implementation
+ * in siphash.c. */
+
+uint64_t siphash(const uint8_t *in, const size_t inlen, const uint8_t *k);
+uint64_t siphash_nocase(const uint8_t *in, const size_t inlen, const uint8_t *k);
+
+uint64_t dictGenHashFunction(const void *key, int len) {
+ return siphash(key,len,dict_hash_function_seed);
+}
+
+uint64_t dictGenCaseHashFunction(const unsigned char *buf, int len) {
+ return siphash_nocase(buf,len,dict_hash_function_seed);
+}
+
+/* ----------------------------- API implementation ------------------------- */
+
+/* Reset a hash table already initialized with ht_init().
+ * NOTE: This function should only be called by ht_destroy(). */
+static void _dictReset(dictht *ht)
+{
+ ht->table = NULL;
+ ht->size = 0;
+ ht->sizemask = 0;
+ ht->used = 0;
+}
+
+/* Create a new hash table */
+dict *dictCreate(dictType *type,
+ void *privDataPtr)
+{
+ dict *d = malloc(sizeof(*d));
+
+ _dictInit(d,type,privDataPtr);
+ return d;
+}
+
+/* Initialize the hash table */
+int _dictInit(dict *d, dictType *type,
+ void *privDataPtr)
+{
+ _dictReset(&d->ht[0]);
+ _dictReset(&d->ht[1]);
+ d->type = type;
+ d->privdata = privDataPtr;
+ d->rehashidx = -1;
+ d->iterators = 0;
+ return DICT_OK;
+}
+
+/* Resize the table to the minimal size that contains all the elements,
+ * but with the invariant of a USED/BUCKETS ratio near to <= 1 */
+int dictResize(dict *d)
+{
+ int minimal;
+
+ if (!dict_can_resize || dictIsRehashing(d)) return DICT_ERR;
+ minimal = d->ht[0].used;
+ if (minimal < DICT_HT_INITIAL_SIZE)
+ minimal = DICT_HT_INITIAL_SIZE;
+ return dictExpand(d, minimal);
+}
+
+/* Expand or create the hash table */
+int dictExpand(dict *d, unsigned long size)
+{
+ /* the size is invalid if it is smaller than the number of
+ * elements already inside the hash table */
+ if (dictIsRehashing(d) || d->ht[0].used > size)
+ return DICT_ERR;
+
+ dictht n; /* the new hash table */
+ unsigned long realsize = _dictNextPower(size);
+
+ /* Rehashing to the same table size is not useful. */
+ if (realsize == d->ht[0].size) return DICT_ERR;
+
+ /* Allocate the new hash table and initialize all pointers to NULL */
+ n.size = realsize;
+ n.sizemask = realsize-1;
+ n.table = calloc(realsize*sizeof(dictEntry*),1);
+ n.used = 0;
+
+ /* Is this the first initialization? If so it's not really a rehashing
+ * we just set the first hash table so that it can accept keys. */
+ if (d->ht[0].table == NULL) {
+ d->ht[0] = n;
+ return DICT_OK;
+ }
+
+ /* Prepare a second hash table for incremental rehashing */
+ d->ht[1] = n;
+ d->rehashidx = 0;
+ return DICT_OK;
+}
+
+/* Performs N steps of incremental rehashing. Returns 1 if there are still
+ * keys to move from the old to the new hash table, otherwise 0 is returned.
+ *
+ * Note that a rehashing step consists in moving a bucket (that may have more
+ * than one key as we use chaining) from the old to the new hash table, however
+ * since part of the hash table may be composed of empty spaces, it is not
+ * guaranteed that this function will rehash even a single bucket, since it
+ * will visit at max N*10 empty buckets in total, otherwise the amount of
+ * work it does would be unbound and the function may block for a long time. */
+int dictRehash(dict *d, int n) {
+ int empty_visits = n*10; /* Max number of empty buckets to visit. */
+ if (!dictIsRehashing(d)) return 0;
+
+ while(n-- && d->ht[0].used != 0) {
+ dictEntry *de, *nextde;
+
+ /* Note that rehashidx can't overflow as we are sure there are more
+ * elements because ht[0].used != 0 */
+ assert(d->ht[0].size > (unsigned long)d->rehashidx);
+ while(d->ht[0].table[d->rehashidx] == NULL) {
+ d->rehashidx++;
+ if (--empty_visits == 0) return 1;
+ }
+ de = d->ht[0].table[d->rehashidx];
+ /* Move all the keys in this bucket from the old to the new hash HT */
+ while(de) {
+ uint64_t h;
+
+ nextde = de->next;
+ /* Get the index in the new hash table */
+ h = dictHashKey(d, de->key) & d->ht[1].sizemask;
+ de->next = d->ht[1].table[h];
+ d->ht[1].table[h] = de;
+ d->ht[0].used--;
+ d->ht[1].used++;
+ de = nextde;
+ }
+ d->ht[0].table[d->rehashidx] = NULL;
+ d->rehashidx++;
+ }
+
+ /* Check if we already rehashed the whole table... */
+ if (d->ht[0].used == 0) {
+ free(d->ht[0].table);
+ d->ht[0] = d->ht[1];
+ _dictReset(&d->ht[1]);
+ d->rehashidx = -1;
+ return 0;
+ }
+
+ /* More to rehash... */
+ return 1;
+}
+
+long long timeInMilliseconds(void) {
+ struct timeval tv;
+
+ gettimeofday(&tv,NULL);
+ return (((long long)tv.tv_sec)*1000)+(tv.tv_usec/1000);
+}
+
+/* Rehash for an amount of time between ms milliseconds and ms+1 milliseconds */
+int dictRehashMilliseconds(dict *d, int ms) {
+ long long start = timeInMilliseconds();
+ int rehashes = 0;
+
+ while(dictRehash(d,100)) {
+ rehashes += 100;
+ if (timeInMilliseconds()-start > ms) break;
+ }
+ return rehashes;
+}
+
+/* This function performs just a step of rehashing, and only if there are
+ * no safe iterators bound to our hash table. When we have iterators in the
+ * middle of a rehashing we can't mess with the two hash tables otherwise
+ * some element can be missed or duplicated.
+ *
+ * This function is called by common lookup or update operations in the
+ * dictionary so that the hash table automatically migrates from H1 to H2
+ * while it is actively used. */
+static void _dictRehashStep(dict *d) {
+ if (d->iterators == 0) dictRehash(d,1);
+}
+
+/* Add an element to the target hash table */
+int dictAdd(dict *d, void *key, void *val)
+{
+ dictEntry *entry = dictAddRaw(d,key,NULL);
+
+ if (!entry) return DICT_ERR;
+ dictSetVal(d, entry, val);
+ return DICT_OK;
+}
+
+/* Low level add or find:
+ * This function adds the entry but instead of setting a value returns the
+ * dictEntry structure to the user, that will make sure to fill the value
+ * field as he wishes.
+ *
+ * This function is also directly exposed to the user API to be called
+ * mainly in order to store non-pointers inside the hash value, example:
+ *
+ * entry = dictAddRaw(dict,mykey,NULL);
+ * if (entry != NULL) dictSetSignedIntegerVal(entry,1000);
+ *
+ * Return values:
+ *
+ * If key already exists NULL is returned, and "*existing" is populated
+ * with the existing entry if existing is not NULL.
+ *
+ * If key was added, the hash entry is returned to be manipulated by the caller.
+ */
+dictEntry *dictAddRaw(dict *d, void *key, dictEntry **existing)
+{
+ long index;
+ dictEntry *entry;
+ dictht *ht;
+
+ if (dictIsRehashing(d)) _dictRehashStep(d);
+
+ /* Get the index of the new element, or -1 if
+ * the element already exists. */
+ if ((index = _dictKeyIndex(d, key, dictHashKey(d,key), existing)) == -1)
+ return NULL;
+
+ /* Allocate the memory and store the new entry.
+ * Insert the element in top, with the assumption that in a database
+ * system it is more likely that recently added entries are accessed
+ * more frequently. */
+ ht = dictIsRehashing(d) ? &d->ht[1] : &d->ht[0];
+ entry = malloc(sizeof(*entry));
+ entry->next = ht->table[index];
+ ht->table[index] = entry;
+ ht->used++;
+
+ /* Set the hash entry fields. */
+ dictSetKey(d, entry, key);
+ return entry;
+}
+
+/* Add or Overwrite:
+ * Add an element, discarding the old value if the key already exists.
+ * Return 1 if the key was added from scratch, 0 if there was already an
+ * element with such key and dictReplace() just performed a value update
+ * operation. */
+int dictReplace(dict *d, void *key, void *val)
+{
+ dictEntry *entry, *existing, auxentry;
+
+ /* Try to add the element. If the key
+ * does not exists dictAdd will succeed. */
+ entry = dictAddRaw(d,key,&existing);
+ if (entry) {
+ dictSetVal(d, entry, val);
+ return 1;
+ }
+
+ /* Set the new value and free the old one. Note that it is important
+ * to do that in this order, as the value may just be exactly the same
+ * as the previous one. In this context, think to reference counting,
+ * you want to increment (set), and then decrement (free), and not the
+ * reverse. */
+ auxentry = *existing;
+ dictSetVal(d, existing, val);
+ dictFreeVal(d, &auxentry);
+ return 0;
+}
+
+/* Add or Find:
+ * dictAddOrFind() is simply a version of dictAddRaw() that always
+ * returns the hash entry of the specified key, even if the key already
+ * exists and can't be added (in that case the entry of the already
+ * existing key is returned.)
+ *
+ * See dictAddRaw() for more information. */
+dictEntry *dictAddOrFind(dict *d, void *key) {
+ dictEntry *entry, *existing;
+ entry = dictAddRaw(d,key,&existing);
+ return entry ? entry : existing;
+}
+
+/* Search and remove an element. This is an helper function for
+ * dictDelete() and dictUnlink(), please check the top comment
+ * of those functions. */
+static dictEntry *dictGenericDelete(dict *d, const void *key, int nofree) {
+ uint64_t h, idx;
+ dictEntry *he, *prevHe;
+ int table;
+
+ if (d->ht[0].used == 0 && d->ht[1].used == 0) return NULL;
+
+ if (dictIsRehashing(d)) _dictRehashStep(d);
+ h = dictHashKey(d, key);
+
+ for (table = 0; table <= 1; table++) {
+ idx = h & d->ht[table].sizemask;
+ he = d->ht[table].table[idx];
+ prevHe = NULL;
+ while(he) {
+ if (key==he->key || dictCompareKeys(d, key, he->key)) {
+ /* Unlink the element from the list */
+ if (prevHe)
+ prevHe->next = he->next;
+ else
+ d->ht[table].table[idx] = he->next;
+ if (!nofree) {
+ dictFreeKey(d, he);
+ dictFreeVal(d, he);
+ free(he);
+ }
+ d->ht[table].used--;
+ return he;
+ }
+ prevHe = he;
+ he = he->next;
+ }
+ if (!dictIsRehashing(d)) break;
+ }
+ return NULL; /* not found */
+}
+
+/* Remove an element, returning DICT_OK on success or DICT_ERR if the
+ * element was not found. */
+int dictDelete(dict *ht, const void *key) {
+ return dictGenericDelete(ht,key,0) ? DICT_OK : DICT_ERR;
+}
+
+/* Remove an element from the table, but without actually releasing
+ * the key, value and dictionary entry. The dictionary entry is returned
+ * if the element was found (and unlinked from the table), and the user
+ * should later call `dictFreeUnlinkedEntry()` with it in order to release it.
+ * Otherwise if the key is not found, NULL is returned.
+ *
+ * This function is useful when we want to remove something from the hash
+ * table but want to use its value before actually deleting the entry.
+ * Without this function the pattern would require two lookups:
+ *
+ * entry = dictFind(...);
+ * // Do something with entry
+ * dictDelete(dictionary,entry);
+ *
+ * Thanks to this function it is possible to avoid this, and use
+ * instead:
+ *
+ * entry = dictUnlink(dictionary,entry);
+ * // Do something with entry
+ * dictFreeUnlinkedEntry(entry); // <- This does not need to lookup again.
+ */
+dictEntry *dictUnlink(dict *ht, const void *key) {
+ return dictGenericDelete(ht,key,1);
+}
+
+/* You need to call this function to really free the entry after a call
+ * to dictUnlink(). It's safe to call this function with 'he' = NULL. */
+void dictFreeUnlinkedEntry(dict *d, dictEntry *he) {
+ if (he == NULL) return;
+ dictFreeKey(d, he);
+ dictFreeVal(d, he);
+ free(he);
+}
+
+/* Destroy an entire dictionary */
+int _dictClear(dict *d, dictht *ht, void(callback)(void *)) {
+ unsigned long i;
+
+ /* Free all the elements */
+ for (i = 0; i < ht->size && ht->used > 0; i++) {
+ dictEntry *he, *nextHe;
+
+ if (callback && (i & 65535) == 0) callback(d->privdata);
+
+ if ((he = ht->table[i]) == NULL) continue;
+ while(he) {
+ nextHe = he->next;
+ dictFreeKey(d, he);
+ dictFreeVal(d, he);
+ free(he);
+ ht->used--;
+ he = nextHe;
+ }
+ }
+ /* Free the table and the allocated cache structure */
+ free(ht->table);
+ /* Re-initialize the table */
+ _dictReset(ht);
+ return DICT_OK; /* never fails */
+}
+
+/* Clear & Release the hash table */
+void dictRelease(dict *d)
+{
+ _dictClear(d,&d->ht[0],NULL);
+ _dictClear(d,&d->ht[1],NULL);
+ free(d);
+}
+
+dictEntry *dictFind(dict *d, const void *key)
+{
+ dictEntry *he;
+ uint64_t h, idx, table;
+
+ if (d->ht[0].used + d->ht[1].used == 0) return NULL; /* dict is empty */
+ if (dictIsRehashing(d)) _dictRehashStep(d);
+ h = dictHashKey(d, key);
+ for (table = 0; table <= 1; table++) {
+ idx = h & d->ht[table].sizemask;
+ he = d->ht[table].table[idx];
+ while(he) {
+ if (key==he->key || dictCompareKeys(d, key, he->key))
+ return he;
+ he = he->next;
+ }
+ if (!dictIsRehashing(d)) return NULL;
+ }
+ return NULL;
+}
+
+void *dictFetchValue(dict *d, const void *key) {
+ dictEntry *he;
+
+ he = dictFind(d,key);
+ return he ? dictGetVal(he) : NULL;
+}
+
+/* A fingerprint is a 64 bit number that represents the state of the dictionary
+ * at a given time, it's just a few dict properties xored together.
+ * When an unsafe iterator is initialized, we get the dict fingerprint, and check
+ * the fingerprint again when the iterator is released.
+ * If the two fingerprints are different it means that the user of the iterator
+ * performed forbidden operations against the dictionary while iterating. */
+long long dictFingerprint(dict *d) {
+ long long integers[6], hash = 0;
+ int j;
+
+ integers[0] = (long) d->ht[0].table;
+ integers[1] = d->ht[0].size;
+ integers[2] = d->ht[0].used;
+ integers[3] = (long) d->ht[1].table;
+ integers[4] = d->ht[1].size;
+ integers[5] = d->ht[1].used;
+
+ /* We hash N integers by summing every successive integer with the integer
+ * hashing of the previous sum. Basically:
+ *
+ * Result = hash(hash(hash(int1)+int2)+int3) ...
+ *
+ * This way the same set of integers in a different order will (likely) hash
+ * to a different number. */
+ for (j = 0; j < 6; j++) {
+ hash += integers[j];
+ /* For the hashing step we use Tomas Wang's 64 bit integer hash. */
+ hash = (~hash) + (hash << 21); // hash = (hash << 21) - hash - 1;
+ hash = hash ^ (hash >> 24);
+ hash = (hash + (hash << 3)) + (hash << 8); // hash * 265
+ hash = hash ^ (hash >> 14);
+ hash = (hash + (hash << 2)) + (hash << 4); // hash * 21
+ hash = hash ^ (hash >> 28);
+ hash = hash + (hash << 31);
+ }
+ return hash;
+}
+
+dictIterator *dictGetIterator(dict *d)
+{
+ dictIterator *iter = malloc(sizeof(*iter));
+
+ iter->d = d;
+ iter->table = 0;
+ iter->index = -1;
+ iter->safe = 0;
+ iter->entry = NULL;
+ iter->nextEntry = NULL;
+ return iter;
+}
+
+dictIterator *dictGetSafeIterator(dict *d) {
+ dictIterator *i = dictGetIterator(d);
+
+ i->safe = 1;
+ return i;
+}
+
+dictEntry *dictNext(dictIterator *iter)
+{
+ while (1) {
+ if (iter->entry == NULL) {
+ dictht *ht = &iter->d->ht[iter->table];
+ if (iter->index == -1 && iter->table == 0) {
+ if (iter->safe)
+ iter->d->iterators++;
+ else
+ iter->fingerprint = dictFingerprint(iter->d);
+ }
+ iter->index++;
+ if (iter->index >= (long) ht->size) {
+ if (dictIsRehashing(iter->d) && iter->table == 0) {
+ iter->table++;
+ iter->index = 0;
+ ht = &iter->d->ht[1];
+ } else {
+ break;
+ }
+ }
+ iter->entry = ht->table[iter->index];
+ } else {
+ iter->entry = iter->nextEntry;
+ }
+ if (iter->entry) {
+ /* We need to save the 'next' here, the iterator user
+ * may delete the entry we are returning. */
+ iter->nextEntry = iter->entry->next;
+ return iter->entry;
+ }
+ }
+ return NULL;
+}
+
+void dictReleaseIterator(dictIterator *iter)
+{
+ if (!(iter->index == -1 && iter->table == 0)) {
+ if (iter->safe)
+ iter->d->iterators--;
+ else
+ assert(iter->fingerprint == dictFingerprint(iter->d));
+ }
+ free(iter);
+}
+
+/* Return a random entry from the hash table. Useful to
+ * implement randomized algorithms */
+dictEntry *dictGetRandomKey(dict *d)
+{
+ dictEntry *he, *orighe;
+ unsigned long h;
+ int listlen, listele;
+
+ if (dictSize(d) == 0) return NULL;
+ if (dictIsRehashing(d)) _dictRehashStep(d);
+ if (dictIsRehashing(d)) {
+ do {
+ /* We are sure there are no elements in indexes from 0
+ * to rehashidx-1 */
+ h = d->rehashidx + (random() % (d->ht[0].size +
+ d->ht[1].size -
+ d->rehashidx));
+ he = (h >= d->ht[0].size) ? d->ht[1].table[h - d->ht[0].size] :
+ d->ht[0].table[h];
+ } while(he == NULL);
+ } else {
+ do {
+ h = random() & d->ht[0].sizemask;
+ he = d->ht[0].table[h];
+ } while(he == NULL);
+ }
+
+ /* Now we found a non empty bucket, but it is a linked
+ * list and we need to get a random element from the list.
+ * The only sane way to do so is counting the elements and
+ * select a random index. */
+ listlen = 0;
+ orighe = he;
+ while(he) {
+ he = he->next;
+ listlen++;
+ }
+ listele = random() % listlen;
+ he = orighe;
+ while(listele--) he = he->next;
+ return he;
+}
+
+/* This function samples the dictionary to return a few keys from random
+ * locations.
+ *
+ * It does not guarantee to return all the keys specified in 'count', nor
+ * it does guarantee to return non-duplicated elements, however it will make
+ * some effort to do both things.
+ *
+ * Returned pointers to hash table entries are stored into 'des' that
+ * points to an array of dictEntry pointers. The array must have room for
+ * at least 'count' elements, that is the argument we pass to the function
+ * to tell how many random elements we need.
+ *
+ * The function returns the number of items stored into 'des', that may
+ * be less than 'count' if the hash table has less than 'count' elements
+ * inside, or if not enough elements were found in a reasonable amount of
+ * steps.
+ *
+ * Note that this function is not suitable when you need a good distribution
+ * of the returned items, but only when you need to "sample" a given number
+ * of continuous elements to run some kind of algorithm or to produce
+ * statistics. However the function is much faster than dictGetRandomKey()
+ * at producing N elements. */
+unsigned int dictGetSomeKeys(dict *d, dictEntry **des, unsigned int count) {
+ unsigned long j; /* internal hash table id, 0 or 1. */
+ unsigned long tables; /* 1 or 2 tables? */
+ unsigned long stored = 0, maxsizemask;
+ unsigned long maxsteps;
+
+ if (dictSize(d) < count) count = dictSize(d);
+ maxsteps = count*10;
+
+ /* Try to do a rehashing work proportional to 'count'. */
+ for (j = 0; j < count; j++) {
+ if (dictIsRehashing(d))
+ _dictRehashStep(d);
+ else
+ break;
+ }
+
+ tables = dictIsRehashing(d) ? 2 : 1;
+ maxsizemask = d->ht[0].sizemask;
+ if (tables > 1 && maxsizemask < d->ht[1].sizemask)
+ maxsizemask = d->ht[1].sizemask;
+
+ /* Pick a random point inside the larger table. */
+ unsigned long i = random() & maxsizemask;
+ unsigned long emptylen = 0; /* Continuous empty entries so far. */
+ while(stored < count && maxsteps--) {
+ for (j = 0; j < tables; j++) {
+ /* Invariant of the dict.c rehashing: up to the indexes already
+ * visited in ht[0] during the rehashing, there are no populated
+ * buckets, so we can skip ht[0] for indexes between 0 and idx-1. */
+ if (tables == 2 && j == 0 && i < (unsigned long) d->rehashidx) {
+ /* Moreover, if we are currently out of range in the second
+ * table, there will be no elements in both tables up to
+ * the current rehashing index, so we jump if possible.
+ * (this happens when going from big to small table). */
+ if (i >= d->ht[1].size) i = d->rehashidx;
+ continue;
+ }
+ if (i >= d->ht[j].size) continue; /* Out of range for this table. */
+ dictEntry *he = d->ht[j].table[i];
+
+ /* Count contiguous empty buckets, and jump to other
+ * locations if they reach 'count' (with a minimum of 5). */
+ if (he == NULL) {
+ emptylen++;
+ if (emptylen >= 5 && emptylen > count) {
+ i = random() & maxsizemask;
+ emptylen = 0;
+ }
+ } else {
+ emptylen = 0;
+ while (he) {
+ /* Collect all the elements of the buckets found non
+ * empty while iterating. */
+ *des = he;
+ des++;
+ he = he->next;
+ stored++;
+ if (stored == count) return stored;
+ }
+ }
+ }
+ i = (i+1) & maxsizemask;
+ }
+ return stored;
+}
+
+/* Function to reverse bits. Algorithm from:
+ * http://graphics.stanford.edu/~seander/bithacks.html#ReverseParallel */
+static unsigned long rev(unsigned long v) {
+ unsigned long s = 8 * sizeof(v); // bit size; must be power of 2
+ unsigned long mask = ~0;
+ while ((s >>= 1) > 0) {
+ mask ^= (mask << s);
+ v = ((v >> s) & mask) | ((v << s) & ~mask);
+ }
+ return v;
+}
+
+/* dictScan() is used to iterate over the elements of a dictionary.
+ *
+ * Iterating works the following way:
+ *
+ * 1) Initially you call the function using a cursor (v) value of 0.
+ * 2) The function performs one step of the iteration, and returns the
+ * new cursor value you must use in the next call.
+ * 3) When the returned cursor is 0, the iteration is complete.
+ *
+ * The function guarantees all elements present in the
+ * dictionary get returned between the start and end of the iteration.
+ * However it is possible some elements get returned multiple times.
+ *
+ * For every element returned, the callback argument 'fn' is
+ * called with 'privdata' as first argument and the dictionary entry
+ * 'de' as second argument.
+ *
+ * HOW IT WORKS.
+ *
+ * The iteration algorithm was designed by Pieter Noordhuis.
+ * The main idea is to increment a cursor starting from the higher order
+ * bits. That is, instead of incrementing the cursor normally, the bits
+ * of the cursor are reversed, then the cursor is incremented, and finally
+ * the bits are reversed again.
+ *
+ * This strategy is needed because the hash table may be resized between
+ * iteration calls.
+ *
+ * dict.c hash tables are always power of two in size, and they
+ * use chaining, so the position of an element in a given table is given
+ * by computing the bitwise AND between Hash(key) and SIZE-1
+ * (where SIZE-1 is always the mask that is equivalent to taking the rest
+ * of the division between the Hash of the key and SIZE).
+ *
+ * For example if the current hash table size is 16, the mask is
+ * (in binary) 1111. The position of a key in the hash table will always be
+ * the last four bits of the hash output, and so forth.
+ *
+ * WHAT HAPPENS IF THE TABLE CHANGES IN SIZE?
+ *
+ * If the hash table grows, elements can go anywhere in one multiple of
+ * the old bucket: for example let's say we already iterated with
+ * a 4 bit cursor 1100 (the mask is 1111 because hash table size = 16).
+ *
+ * If the hash table will be resized to 64 elements, then the new mask will
+ * be 111111. The new buckets you obtain by substituting in ??1100
+ * with either 0 or 1 can be targeted only by keys we already visited
+ * when scanning the bucket 1100 in the smaller hash table.
+ *
+ * By iterating the higher bits first, because of the inverted counter, the
+ * cursor does not need to restart if the table size gets bigger. It will
+ * continue iterating using cursors without '1100' at the end, and also
+ * without any other combination of the final 4 bits already explored.
+ *
+ * Similarly when the table size shrinks over time, for example going from
+ * 16 to 8, if a combination of the lower three bits (the mask for size 8
+ * is 111) were already completely explored, it would not be visited again
+ * because we are sure we tried, for example, both 0111 and 1111 (all the
+ * variations of the higher bit) so we don't need to test it again.
+ *
+ * WAIT... YOU HAVE *TWO* TABLES DURING REHASHING!
+ *
+ * Yes, this is true, but we always iterate the smaller table first, then
+ * we test all the expansions of the current cursor into the larger
+ * table. For example if the current cursor is 101 and we also have a
+ * larger table of size 16, we also test (0)101 and (1)101 inside the larger
+ * table. This reduces the problem back to having only one table, where
+ * the larger one, if it exists, is just an expansion of the smaller one.
+ *
+ * LIMITATIONS
+ *
+ * This iterator is completely stateless, and this is a huge advantage,
+ * including no additional memory used.
+ *
+ * The disadvantages resulting from this design are:
+ *
+ * 1) It is possible we return elements more than once. However this is usually
+ * easy to deal with in the application level.
+ * 2) The iterator must return multiple elements per call, as it needs to always
+ * return all the keys chained in a given bucket, and all the expansions, so
+ * we are sure we don't miss keys moving during rehashing.
+ * 3) The reverse cursor is somewhat hard to understand at first, but this
+ * comment is supposed to help.
+ */
+unsigned long dictScan(dict *d,
+ unsigned long v,
+ dictScanFunction *fn,
+ dictScanBucketFunction* bucketfn,
+ void *privdata)
+{
+ dictht *t0, *t1;
+ const dictEntry *de, *next;
+ unsigned long m0, m1;
+
+ if (dictSize(d) == 0) return 0;
+
+ if (!dictIsRehashing(d)) {
+ t0 = &(d->ht[0]);
+ m0 = t0->sizemask;
+
+ /* Emit entries at cursor */
+ if (bucketfn) bucketfn(privdata, &t0->table[v & m0]);
+ de = t0->table[v & m0];
+ while (de) {
+ next = de->next;
+ fn(privdata, de);
+ de = next;
+ }
+
+ /* Set unmasked bits so incrementing the reversed cursor
+ * operates on the masked bits */
+ v |= ~m0;
+
+ /* Increment the reverse cursor */
+ v = rev(v);
+ v++;
+ v = rev(v);
+
+ } else {
+ t0 = &d->ht[0];
+ t1 = &d->ht[1];
+
+ /* Make sure t0 is the smaller and t1 is the bigger table */
+ if (t0->size > t1->size) {
+ t0 = &d->ht[1];
+ t1 = &d->ht[0];
+ }
+
+ m0 = t0->sizemask;
+ m1 = t1->sizemask;
+
+ /* Emit entries at cursor */
+ if (bucketfn) bucketfn(privdata, &t0->table[v & m0]);
+ de = t0->table[v & m0];
+ while (de) {
+ next = de->next;
+ fn(privdata, de);
+ de = next;
+ }
+
+ /* Iterate over indices in larger table that are the expansion
+ * of the index pointed to by the cursor in the smaller table */
+ do {
+ /* Emit entries at cursor */
+ if (bucketfn) bucketfn(privdata, &t1->table[v & m1]);
+ de = t1->table[v & m1];
+ while (de) {
+ next = de->next;
+ fn(privdata, de);
+ de = next;
+ }
+
+ /* Increment the reverse cursor not covered by the smaller mask.*/
+ v |= ~m1;
+ v = rev(v);
+ v++;
+ v = rev(v);
+
+ /* Continue while bits covered by mask difference is non-zero */
+ } while (v & (m0 ^ m1));
+ }
+
+ return v;
+}
+
+/* ------------------------- private functions ------------------------------ */
+
+/* Expand the hash table if needed */
+static int _dictExpandIfNeeded(dict *d)
+{
+ /* Incremental rehashing already in progress. Return. */
+ if (dictIsRehashing(d)) return DICT_OK;
+
+ /* If the hash table is empty expand it to the initial size. */
+ if (d->ht[0].size == 0) return dictExpand(d, DICT_HT_INITIAL_SIZE);
+
+ /* If we reached the 1:1 ratio, and we are allowed to resize the hash
+ * table (global setting) or we should avoid it but the ratio between
+ * elements/buckets is over the "safe" threshold, we resize doubling
+ * the number of buckets. */
+ if (d->ht[0].used >= d->ht[0].size &&
+ (dict_can_resize ||
+ d->ht[0].used/d->ht[0].size > dict_force_resize_ratio))
+ {
+ return dictExpand(d, d->ht[0].used*2);
+ }
+ return DICT_OK;
+}
+
+/* Our hash table capability is a power of two */
+static unsigned long _dictNextPower(unsigned long size)
+{
+ unsigned long i = DICT_HT_INITIAL_SIZE;
+
+ if (size >= LONG_MAX) return LONG_MAX + 1LU;
+ while(1) {
+ if (i >= size)
+ return i;
+ i *= 2;
+ }
+}
+
+/* Returns the index of a free slot that can be populated with
+ * a hash entry for the given 'key'.
+ * If the key already exists, -1 is returned
+ * and the optional output parameter may be filled.
+ *
+ * Note that if we are in the process of rehashing the hash table, the
+ * index is always returned in the context of the second (new) hash table. */
+static long _dictKeyIndex(dict *d, const void *key, uint64_t hash, dictEntry **existing)
+{
+ unsigned long idx, table;
+ dictEntry *he;
+ if (existing) *existing = NULL;
+
+ /* Expand the hash table if needed */
+ if (_dictExpandIfNeeded(d) == DICT_ERR)
+ return -1;
+ for (table = 0; table <= 1; table++) {
+ idx = hash & d->ht[table].sizemask;
+ /* Search if this slot does not already contain the given key */
+ he = d->ht[table].table[idx];
+ while(he) {
+ if (key==he->key || dictCompareKeys(d, key, he->key)) {
+ if (existing) *existing = he;
+ return -1;
+ }
+ he = he->next;
+ }
+ if (!dictIsRehashing(d)) break;
+ }
+ return idx;
+}
+
+void dictEmpty(dict *d, void(callback)(void*)) {
+ _dictClear(d,&d->ht[0],callback);
+ _dictClear(d,&d->ht[1],callback);
+ d->rehashidx = -1;
+ d->iterators = 0;
+}
+
+void dictEnableResize(void) {
+ dict_can_resize = 1;
+}
+
+void dictDisableResize(void) {
+ dict_can_resize = 0;
+}
+
+uint64_t dictGetHash(dict *d, const void *key) {
+ return dictHashKey(d, key);
+}
+
+/* Finds the dictEntry reference by using pointer and pre-calculated hash.
+ * oldkey is a dead pointer and should not be accessed.
+ * the hash value should be provided using dictGetHash.
+ * no string / key comparison is performed.
+ * return value is the reference to the dictEntry if found, or NULL if not found. */
+dictEntry **dictFindEntryRefByPtrAndHash(dict *d, const void *oldptr, uint64_t hash) {
+ dictEntry *he, **heref;
+ unsigned long idx, table;
+
+ if (d->ht[0].used + d->ht[1].used == 0) return NULL; /* dict is empty */
+ for (table = 0; table <= 1; table++) {
+ idx = hash & d->ht[table].sizemask;
+ heref = &d->ht[table].table[idx];
+ he = *heref;
+ while(he) {
+ if (oldptr==he->key)
+ return heref;
+ heref = &he->next;
+ he = *heref;
+ }
+ if (!dictIsRehashing(d)) return NULL;
+ }
+ return NULL;
+}
+
+/* ------------------------------- Debugging ---------------------------------*/
+
+#define DICT_STATS_VECTLEN 50
+size_t _dictGetStatsHt(char *buf, size_t bufsize, dictht *ht, int tableid) {
+ unsigned long i, slots = 0, chainlen, maxchainlen = 0;
+ unsigned long totchainlen = 0;
+ unsigned long clvector[DICT_STATS_VECTLEN];
+ size_t l = 0;
+
+ if (ht->used == 0) {
+ return snprintf(buf,bufsize,
+ "No stats available for empty dictionaries\n");
+ }
+
+ /* Compute stats. */
+ for (i = 0; i < DICT_STATS_VECTLEN; i++) clvector[i] = 0;
+ for (i = 0; i < ht->size; i++) {
+ dictEntry *he;
+
+ if (ht->table[i] == NULL) {
+ clvector[0]++;
+ continue;
+ }
+ slots++;
+ /* For each hash entry on this slot... */
+ chainlen = 0;
+ he = ht->table[i];
+ while(he) {
+ chainlen++;
+ he = he->next;
+ }
+ clvector[(chainlen < DICT_STATS_VECTLEN) ? chainlen : (DICT_STATS_VECTLEN-1)]++;
+ if (chainlen > maxchainlen) maxchainlen = chainlen;
+ totchainlen += chainlen;
+ }
+
+ /* Generate human readable stats. */
+ l += snprintf(buf+l,bufsize-l,
+ "Hash table %d stats (%s):\n"
+ " table size: %ld\n"
+ " number of elements: %ld\n"
+ " different slots: %ld\n"
+ " max chain length: %ld\n"
+ " avg chain length (counted): %.02f\n"
+ " avg chain length (computed): %.02f\n"
+ " Chain length distribution:\n",
+ tableid, (tableid == 0) ? "main hash table" : "rehashing target",
+ ht->size, ht->used, slots, maxchainlen,
+ (float)totchainlen/slots, (float)ht->used/slots);
+
+ for (i = 0; i < DICT_STATS_VECTLEN-1; i++) {
+ if (clvector[i] == 0) continue;
+ if (l >= bufsize) break;
+ l += snprintf(buf+l,bufsize-l,
+ " %s%ld: %ld (%.02f%%)\n",
+ (i == DICT_STATS_VECTLEN-1)?">= ":"",
+ i, clvector[i], ((float)clvector[i]/ht->size)*100);
+ }
+
+ /* Unlike snprintf(), teturn the number of characters actually written. */
+ if (bufsize) buf[bufsize-1] = '\0';
+ return strlen(buf);
+}
+
+void dictGetStats(char *buf, size_t bufsize, dict *d) {
+ size_t l;
+ char *orig_buf = buf;
+ size_t orig_bufsize = bufsize;
+
+ l = _dictGetStatsHt(buf,bufsize,&d->ht[0],0);
+ buf += l;
+ bufsize -= l;
+ if (dictIsRehashing(d) && bufsize > 0) {
+ _dictGetStatsHt(buf,bufsize,&d->ht[1],1);
+ }
+ /* Make sure there is a NULL term at the end. */
+ if (orig_bufsize) orig_buf[orig_bufsize-1] = '\0';
+}
+
+/* ------------------------------- Benchmark ---------------------------------*/
+
+#ifdef DICT_BENCHMARK_MAIN
+
+#include "sds.h"
+
+uint64_t hashCallback(const void *key) {
+ return dictGenHashFunction((unsigned char*)key, sdslen((char*)key));
+}
+
+int compareCallback(void *privdata, const void *key1, const void *key2) {
+ int l1,l2;
+ DICT_NOTUSED(privdata);
+
+ l1 = sdslen((sds)key1);
+ l2 = sdslen((sds)key2);
+ if (l1 != l2) return 0;
+ return memcmp(key1, key2, l1) == 0;
+}
+
+void freeCallback(void *privdata, void *val) {
+ DICT_NOTUSED(privdata);
+
+ sdsfree(val);
+}
+
+dictType BenchmarkDictType = {
+ hashCallback,
+ NULL,
+ NULL,
+ compareCallback,
+ freeCallback,
+ NULL
+};
+
+#define start_benchmark() start = timeInMilliseconds()
+#define end_benchmark(msg) do { \
+ elapsed = timeInMilliseconds()-start; \
+ printf(msg ": %ld items in %lld ms\n", count, elapsed); \
+} while(0);
+
+/* dict-benchmark [count] */
+int main(int argc, char **argv) {
+ long j;
+ long long start, elapsed;
+ dict *dict = dictCreate(&BenchmarkDictType,NULL);
+ long count = 0;
+
+ if (argc == 2) {
+ count = strtol(argv[1],NULL,10);
+ } else {
+ count = 5000000;
+ }
+
+ start_benchmark();
+ for (j = 0; j < count; j++) {
+ int retval = dictAdd(dict,sdsfromlonglong(j),(void*)j);
+ assert(retval == DICT_OK);
+ }
+ end_benchmark("Inserting");
+ assert((long)dictSize(dict) == count);
+
+ /* Wait for rehashing. */
+ while (dictIsRehashing(dict)) {
+ dictRehashMilliseconds(dict,100);
+ }
+
+ start_benchmark();
+ for (j = 0; j < count; j++) {
+ sds key = sdsfromlonglong(j);
+ dictEntry *de = dictFind(dict,key);
+ assert(de != NULL);
+ sdsfree(key);
+ }
+ end_benchmark("Linear access of existing elements");
+
+ start_benchmark();
+ for (j = 0; j < count; j++) {
+ sds key = sdsfromlonglong(j);
+ dictEntry *de = dictFind(dict,key);
+ assert(de != NULL);
+ sdsfree(key);
+ }
+ end_benchmark("Linear access of existing elements (2nd round)");
+
+ start_benchmark();
+ for (j = 0; j < count; j++) {
+ sds key = sdsfromlonglong(rand() % count);
+ dictEntry *de = dictFind(dict,key);
+ assert(de != NULL);
+ sdsfree(key);
+ }
+ end_benchmark("Random access of existing elements");
+
+ start_benchmark();
+ for (j = 0; j < count; j++) {
+ sds key = sdsfromlonglong(rand() % count);
+ key[0] = 'X';
+ dictEntry *de = dictFind(dict,key);
+ assert(de == NULL);
+ sdsfree(key);
+ }
+ end_benchmark("Accessing missing");
+
+ start_benchmark();
+ for (j = 0; j < count; j++) {
+ sds key = sdsfromlonglong(j);
+ int retval = dictDelete(dict,key);
+ assert(retval == DICT_OK);
+ key[0] += 17; /* Change first number to letter. */
+ retval = dictAdd(dict,key,(void*)j);
+ assert(retval == DICT_OK);
+ }
+ end_benchmark("Removing and adding");
+}
+#endif