aboutsummaryrefslogtreecommitdiff
diff options
context:
space:
mode:
-rwxr-xr-xutils/dm-search4
1 files changed, 2 insertions, 2 deletions
diff --git a/utils/dm-search b/utils/dm-search
index 48164f9..c48d970 100755
--- a/utils/dm-search
+++ b/utils/dm-search
@@ -346,7 +346,7 @@ def do_fit(dm_particle_id,dm_mass,dm_energy,data,muon,data_mc,weights,atmo_scale
data_mc_with_weights = pd.merge(data_mc,weights[weights.universe == universe],how='left',on=['run','evn'])
data_mc_with_weights.weight = data_mc_with_weights.weight.fillna(1.0)
- nll = make_nll(data,muon,data_mc_with_weights,atmo_scale_factor,muon_scale_factor,bins,reweight=True,print_nll=print_nll)
+ nll = make_nll(dm_particle_id,dm_mass,dm_energy,data,muon,data_mc_with_weights,atmo_scale_factor,muon_scale_factor,bins,reweight=True,print_nll=print_nll)
nlls.append(nll(xopt))
universe = np.argmin(nlls)
@@ -356,7 +356,7 @@ def do_fit(dm_particle_id,dm_mass,dm_energy,data,muon,data_mc,weights,atmo_scale
data_mc_with_weights.weight = data_mc_with_weights.weight.fillna(1.0)
# Create a new negative log likelihood function with the weighted Monte Carlo.
- nll = make_nll(data,muon,data_mc_with_weights,atmo_scale_factor,muon_scale_factor,bins,reweight=True,print_nll=print_nll)
+ nll = make_nll(dm_particle_id,dm_mass,dm_energy,data,muon,data_mc_with_weights,atmo_scale_factor,muon_scale_factor,bins,reweight=True,print_nll=print_nll)
# Now, we refit with the Monte Carlo weighted by the most likely GENIE
# systematics.