diff options
author | tlatorre <tlatorre@uchicago.edu> | 2020-07-06 09:41:33 -0500 |
---|---|---|
committer | tlatorre <tlatorre@uchicago.edu> | 2020-07-06 09:41:33 -0500 |
commit | 35e2ebfbf1313fa753d5b18787b2d551ec243a33 (patch) | |
tree | 08dad1cf8c3d9033d77790fbfd5a7cedeafb1177 /utils | |
parent | b7eda016951273419aed1f0c68dd0150a6026a3e (diff) | |
download | sddm-35e2ebfbf1313fa753d5b18787b2d551ec243a33.tar.gz sddm-35e2ebfbf1313fa753d5b18787b2d551ec243a33.tar.bz2 sddm-35e2ebfbf1313fa753d5b18787b2d551ec243a33.zip |
add first draft of plot-muons
This commit adds a first draft of a script to plot the michel energy
distribution and particle id histograms for data and Monte Carlo and to
plot the energy bias and resolution for stopping muons.
Diffstat (limited to 'utils')
-rwxr-xr-x | utils/plot-energy | 2 | ||||
-rwxr-xr-x | utils/plot-muons | 268 | ||||
-rwxr-xr-x | utils/sddm/plot_energy.py | 2 |
3 files changed, 268 insertions, 4 deletions
diff --git a/utils/plot-energy b/utils/plot-energy index ef34f97..4568bcc 100755 --- a/utils/plot-energy +++ b/utils/plot-energy @@ -295,8 +295,6 @@ if __name__ == '__main__': stopping_muons['T_dx'] = dx_to_energy(stopping_muons.dx) stopping_muons['dT'] = stopping_muons['energy1'] - stopping_muons['T_dx'] - print(stopping_muons[['r','r_psup','dx','T_dx','energy1','r_michel','x','y','z','x_michel','y_michel','z_michel','ftp_r_michel']]) - fig = plt.figure() plt.hist((stopping_muons['energy1']-stopping_muons['T_dx'])*100/stopping_muons['T_dx'], bins=np.linspace(-100,100,200), histtype='step') despine(fig,trim=True) diff --git a/utils/plot-muons b/utils/plot-muons new file mode 100755 index 0000000..2a6e0a2 --- /dev/null +++ b/utils/plot-muons @@ -0,0 +1,268 @@ +#!/usr/bin/env python +# Copyright (c) 2019, Anthony Latorre <tlatorre at uchicago> +# +# This program is free software: you can redistribute it and/or modify it +# under the terms of the GNU General Public License as published by the Free +# Software Foundation, either version 3 of the License, or (at your option) +# any later version. +# +# This program is distributed in the hope that it will be useful, but WITHOUT +# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or +# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for +# more details. +# +# You should have received a copy of the GNU General Public License along with +# this program. If not, see <https://www.gnu.org/licenses/>. +""" +Script to plot the fit results for stopping muons and Michels. To run it just +run: + + $ ./plot-muon [list of fit results] + +Currently it will plot energy distributions for external muons, stopping muons, +and michel electrons. +""" +from __future__ import print_function, division +import numpy as np +from scipy.stats import iqr, poisson +from matplotlib.lines import Line2D +from scipy.stats import iqr, norm, beta +from scipy.special import spence +from itertools import izip_longest + +particle_id = {20: 'e', 22: r'\mu'} + +def plot_hist2(df, muons=False, norm=1.0, label=None, color=None): + for id, df_id in sorted(df.groupby('id')): + if id == 20: + plt.subplot(2,3,1) + elif id == 22: + plt.subplot(2,3,2) + elif id == 2020: + plt.subplot(2,3,4) + elif id == 2022: + plt.subplot(2,3,5) + elif id == 2222: + plt.subplot(2,3,6) + + if muons: + plt.hist(np.log10(df_id.ke.values/1000), bins=np.linspace(0,4.5,100), histtype='step', weights=np.tile(norm,len(df_id.ke.values)), label=label, color=color) + plt.xlabel("log10(Energy (GeV))") + else: + bins = np.logspace(np.log10(20),np.log10(10e3),21) + plt.hist(df_id.ke.values, bins=bins, histtype='step', weights=np.tile(norm,len(df_id.ke.values)), label=label, color=color) + plt.gca().set_xscale("log") + plt.xlabel("Energy (MeV)") + plt.title('$' + ''.join([particle_id[int(''.join(x))] for x in grouper(str(id),2)]) + '$') + + if len(df): + plt.tight_layout() + +if __name__ == '__main__': + import argparse + import numpy as np + import pandas as pd + import sys + import h5py + from sddm.plot_energy import * + from sddm.plot import * + from sddm import setup_matplotlib + + parser = argparse.ArgumentParser("plot fit results") + parser.add_argument("filenames", nargs='+', help="input files") + parser.add_argument("--save", action='store_true', default=False, help="save corner plots for backgrounds") + parser.add_argument("--mc", nargs='+', required=True, help="atmospheric MC files") + parser.add_argument("--nhit-thresh", type=int, default=None, help="nhit threshold to apply to events before processing (should only be used for testing to speed things up)") + args = parser.parse_args() + + setup_matplotlib(args.save) + + import matplotlib.pyplot as plt + + # Loop over runs to prevent using too much memory + evs = [] + rhdr = pd.concat([read_hdf(filename, "rhdr").assign(filename=filename) for filename in args.filenames],ignore_index=True) + for run, df in rhdr.groupby('run'): + evs.append(get_events(df.filename.values, merge_fits=True, nhit_thresh=args.nhit_thresh)) + ev = pd.concat(evs) + ev_mc = get_events(args.mc, merge_fits=True) + + # Drop events without fits + ev = ev[~np.isnan(ev.fmin)] + ev_mc = ev_mc[~np.isnan(ev_mc.fmin)] + + ev = ev.reset_index() + ev_mc = ev_mc.reset_index() + + # Set all prompt events in the MC to be muons + #ev_mc.loc[ev_mc.prompt,'muon'] = True + + # FIXME: TESTING + ev_mc.loc[ev_mc.prompt & (ev_mc.id == 22) & (ev_mc.r_psup > 0.9),'muon'] = True + + # First, do basic data cleaning which is done for all events. + ev = ev[ev.signal | ev.muon] + ev_mc = ev_mc[ev_mc.signal | ev_mc.muon] + + # 00-orphan cut + ev = ev[(ev.gtid & 0xff) != 0] + ev_mc = ev_mc[(ev_mc.gtid & 0xff) != 0] + + # Now, we select events tagged by the muon tag which should tag only + # external muons. We keep the sample of muons since it's needed later to + # identify Michel electrons and to apply the muon follower cut + muons = ev[ev.muon] + muons_mc = ev_mc[ev_mc.muon] + + # Try to identify Michel electrons. Currently, the event selection is based + # on Richie's thesis. Here, we do the following: + # + # 1. Apply more data cleaning cuts to potential Michel electrons + # 2. Nhit >= 100 + # 3. It must be > 800 ns and less than 20 microseconds from a prompt event + # or a muon + michel = ev[ev.michel] + michel_mc = ev_mc[ev_mc.michel] + + # remove events 200 microseconds after a muon + ev = ev.groupby('run',group_keys=False).apply(muon_follower_cut) + + muons = muons[muons.psi < 6] + muons_mc = muons_mc[muons_mc.psi < 6] + + handles = [Line2D([0], [0], color='C0'), + Line2D([0], [0], color='C1')] + labels = ('Data','Monte Carlo') + + fig = plt.figure() + plot_hist2(michel,color='C0') + plot_hist2(michel_mc,norm=len(michel)/len(michel_mc),color='C1') + despine(fig,trim=True) + fig.legend(handles,labels,loc='upper right') + if args.save: + plt.savefig("michel_electrons.pdf") + plt.savefig("michel_electrons.eps") + else: + plt.suptitle("Michel Electrons") + + fig = plt.figure() + plot_hist2(muons,muons=True,color='C0') + plot_hist2(muons_mc,norm=len(muons)/len(muons_mc),muons=True,color='C1') + despine(fig,trim=True) + if len(muons): + plt.tight_layout() + fig.legend(handles,labels,loc='upper right') + if args.save: + plt.savefig("external_muons.pdf") + plt.savefig("external_muons.eps") + else: + plt.suptitle("External Muons") + + # Plot the energy and angular distribution for external muons + fig = plt.figure() + plt.subplot(2,1,1) + plt.hist(muons.ke.values, bins=np.logspace(3,7,100), histtype='step', color='C0', label="Data") + plt.hist(muons_mc.ke.values, bins=np.logspace(3,7,100), histtype='step', color='C1', label="Monte Carlo") + plt.legend() + plt.xlabel("Energy (MeV)") + plt.gca().set_xscale("log") + plt.subplot(2,1,2) + plt.hist(np.cos(muons.theta.values), bins=np.linspace(-1,1,100), histtype='step', color='C0', label="Data") + plt.hist(np.cos(muons_mc.theta.values), bins=np.linspace(-1,1,100), histtype='step', color='C1', label="Monte Carlo") + plt.legend() + despine(fig,trim=True) + plt.xlabel(r"$\cos(\theta)$") + plt.tight_layout() + if args.save: + plt.savefig("muon_energy_cos_theta.pdf") + plt.savefig("muon_energy_cos_theta.eps") + else: + plt.suptitle("Muons") + + stopping_muons = pd.merge(ev[ev.muon & ev.stopping_muon],michel,left_on=['run','gtid'],right_on=['run','muon_gtid'],suffixes=('','_michel')) + stopping_muons_mc = pd.merge(ev_mc[ev_mc.muon & ev_mc.stopping_muon],michel_mc,left_on=['run','gtid'],right_on=['run','muon_gtid'],suffixes=('','_michel')) + + if len(stopping_muons): + # project muon to PSUP + stopping_muons['dx'] = stopping_muons.apply(get_dx,axis=1) + stopping_muons_mc['dx'] = stopping_muons_mc.apply(get_dx,axis=1) + # energy based on distance travelled + stopping_muons['T_dx'] = dx_to_energy(stopping_muons.dx) + stopping_muons_mc['T_dx'] = dx_to_energy(stopping_muons_mc.dx) + stopping_muons['dT'] = stopping_muons['energy1'] - stopping_muons['T_dx'] + stopping_muons_mc['dT'] = stopping_muons_mc['energy1'] - stopping_muons_mc['T_dx'] + + print(stopping_muons[['run','gtid','energy1','T_dx','dT','gtid_michel','r_michel','ftp_r_michel','id','r']]) + + fig = plt.figure() + plt.hist((stopping_muons['energy1']-stopping_muons['T_dx'])*100/stopping_muons['T_dx'], bins=np.linspace(-100,100,200), histtype='step', color='C0', label="Data") + plt.hist((stopping_muons_mc['energy1']-stopping_muons_mc['T_dx'])*100/stopping_muons_mc['T_dx'], bins=np.linspace(-100,100,200), histtype='step', color='C1', label="Monte Carlo") + plt.legend() + despine(fig,trim=True) + plt.xlabel("Fractional energy difference (\%)") + plt.title("Fractional energy difference for Stopping Muons") + plt.tight_layout() + if args.save: + plt.savefig("stopping_muon_fractional_energy_difference.pdf") + plt.savefig("stopping_muon_fractional_energy_difference.eps") + else: + plt.title("Stopping Muon Fractional Energy Difference") + + # 100 bins between 50 MeV and 10 GeV + bins = np.linspace(50,2000,10) + + pd_bins = pd.cut(stopping_muons['T_dx'],bins) + pd_bins_mc = pd.cut(stopping_muons_mc['T_dx'],bins) + + T = (bins[1:] + bins[:-1])/2 + + dT = stopping_muons.groupby(pd_bins)['dT'].agg(['mean','sem','std',std_err,median,median_err,iqr_std,iqr_std_err]) + dT_mc = stopping_muons_mc.groupby(pd_bins_mc)['dT'].agg(['mean','sem','std',std_err,median,median_err,iqr_std,iqr_std_err]) + + fig = plt.figure() + plt.errorbar(T, dT['median']*100/T, yerr=dT['median_err']*100/T, color='C0', label="Data") + plt.errorbar(T, dT_mc['median']*100/T, yerr=dT_mc['median_err']*100/T, color='C1', label="Monte Carlo") + plt.gca().set_ylim(-500,500) + plt.legend() + despine(fig,trim=True) + plt.xlabel("Kinetic Energy (MeV)") + plt.ylabel(r"Energy bias (\%)") + plt.tight_layout() + if args.save: + plt.savefig("stopping_muon_energy_bias.pdf") + plt.savefig("stopping_muon_energy_bias.eps") + else: + plt.title("Stopping Muon Energy Bias") + + fig = plt.figure() + plt.errorbar(T, dT['iqr_std']*100/T, yerr=dT['iqr_std_err']*100/T, color='C0', label="Data") + plt.errorbar(T, dT_mc['iqr_std']*100/T, yerr=dT_mc['iqr_std_err']*100/T, color='C1', label="Monte Carlo") + plt.gca().set_ylim(-500,500) + despine(fig,trim=True) + plt.xlabel("Kinetic Energy (MeV)") + plt.ylabel(r"Energy resolution (\%)") + plt.tight_layout() + if args.save: + plt.savefig("stopping_muon_energy_resolution.pdf") + plt.savefig("stopping_muon_energy_resolution.eps") + else: + plt.title("Stopping Muon Energy Resolution") + + # For the Michel energy plot, we only look at the single particle electron + # fit + michel = michel[michel.id == 20] + + fig = plt.figure() + bins = np.linspace(0,100,41) + plt.hist(michel.ke.values, bins=bins, histtype='step', color='C0', label="Data") + plt.hist(michel_mc.ke.values, weights=np.tile(len(michel)/len(michel_mc),len(michel_mc.ke.values)), bins=bins, histtype='step', color='C1', label="Monte Carlo") + despine(fig,trim=True) + plt.xlabel("Energy (MeV)") + plt.tight_layout() + plt.legend() + if args.save: + plt.savefig("michel_electrons_ke.pdf") + plt.savefig("michel_electrons_ke.eps") + else: + plt.title("Michel Electrons") + plt.show() diff --git a/utils/sddm/plot_energy.py b/utils/sddm/plot_energy.py index 4d166e1..a504d39 100755 --- a/utils/sddm/plot_energy.py +++ b/utils/sddm/plot_energy.py @@ -531,8 +531,6 @@ def get_events(filenames, merge_fits=False, nhit_thresh=None): # event will get tagged as a prompt event. ev = ev.groupby('run',group_keys=False).apply(prompt_event) - print("number of events after prompt nhit cut = %i" % np.count_nonzero(ev.prompt)) - # flasher follower cut ev = ev.groupby('run',group_keys=False).apply(flasher_follower_cut) |