aboutsummaryrefslogtreecommitdiff
path: root/utils/plot-muons
diff options
context:
space:
mode:
authortlatorre <tlatorre@uchicago.edu>2020-09-16 10:37:23 -0500
committertlatorre <tlatorre@uchicago.edu>2020-09-16 10:37:23 -0500
commit1cc5fc8014ab75ac55672aa962228ac54ae8d9db (patch)
treec3490742679196b35561b2a1496dde0dac88e37f /utils/plot-muons
parente9a15c52a88b86188c60cd423f9266a45a1701d6 (diff)
downloadsddm-1cc5fc8014ab75ac55672aa962228ac54ae8d9db.tar.gz
sddm-1cc5fc8014ab75ac55672aa962228ac54ae8d9db.tar.bz2
sddm-1cc5fc8014ab75ac55672aa962228ac54ae8d9db.zip
update plot-muons to plot bias and resolution with fmt='o'
Diffstat (limited to 'utils/plot-muons')
-rwxr-xr-xutils/plot-muons12
1 files changed, 6 insertions, 6 deletions
diff --git a/utils/plot-muons b/utils/plot-muons
index 45139a7..25e7d24 100755
--- a/utils/plot-muons
+++ b/utils/plot-muons
@@ -267,12 +267,12 @@ if __name__ == '__main__':
print("Data energy bias = %.2f +/- %.2f" % (mean, std))
fig, (a0, a1) = plt.subplots(2, 1, gridspec_kw={'height_ratios': [3, 1]})
- a0.errorbar(T, dT['median']*100/T, yerr=dT['median_err']*100/T, color='C0', label="Data")
- a0.errorbar(T, dT_mc['median']*100/T, yerr=dT_mc['median_err']*100/T, color='C1', label="Monte Carlo")
+ a0.errorbar(T, dT['median']*100/T, yerr=dT['median_err']*100/T, fmt='o', color='C0', label="Data")
+ a0.errorbar(T, dT_mc['median']*100/T, yerr=dT_mc['median_err']*100/T, fmt='o', color='C1', label="Monte Carlo")
despine(ax=a0,trim=True)
a0.set_ylabel(r"Energy bias (\%)")
a0.legend()
- a1.errorbar(T, dT['median']*100/T-dT_mc['median']*100/T, yerr=np.sqrt((dT['median_err']*100/T)**2+(dT_mc['median_err']*100/T)**2), color='C0')
+ a1.errorbar(T, dT['median']*100/T-dT_mc['median']*100/T, yerr=np.sqrt((dT['median_err']*100/T)**2+(dT_mc['median_err']*100/T)**2), fmt='o', color='C0')
a1.hlines(mean,T[0],T[-1],linestyles='--',color='r')
a1.set_ylim(0,25)
despine(ax=a1,trim=True)
@@ -292,12 +292,12 @@ if __name__ == '__main__':
print("Data energy resolution = %.2f +/- %.2f" % (mean, std))
fig, (a0, a1) = plt.subplots(2, 1, gridspec_kw={'height_ratios': [3, 1]})
- a0.errorbar(T, dT['iqr_std']*100/T, yerr=dT['iqr_std_err']*100/T, color='C0', label="Data")
- a0.errorbar(T, dT_mc['iqr_std']*100/T, yerr=dT_mc['iqr_std_err']*100/T, color='C1', label="Monte Carlo")
+ a0.errorbar(T, dT['iqr_std']*100/T, yerr=dT['iqr_std_err']*100/T, fmt='o', color='C0', label="Data")
+ a0.errorbar(T, dT_mc['iqr_std']*100/T, yerr=dT_mc['iqr_std_err']*100/T, fmt='o', color='C1', label="Monte Carlo")
a0.set_ylabel(r"Energy resolution (\%)")
despine(ax=a0,trim=True)
a0.legend()
- a1.errorbar(T, dT['iqr_std']*100/T-dT_mc['iqr_std']*100/T, yerr=np.sqrt((dT['iqr_std_err']*100/T)**2+(dT_mc['iqr_std_err']*100/T)**2), color='C0')
+ a1.errorbar(T, dT['iqr_std']*100/T-dT_mc['iqr_std']*100/T, yerr=np.sqrt((dT['iqr_std_err']*100/T)**2+(dT_mc['iqr_std_err']*100/T)**2), fmt='o', color='C0')
a1.hlines(mean,T[0],T[-1],linestyles='--',color='r')
despine(ax=a1,trim=True)
a1.set_xlabel("Kinetic Energy (MeV)")