diff options
author | tlatorre <tlatorre@uchicago.edu> | 2020-05-11 10:30:39 -0500 |
---|---|---|
committer | tlatorre <tlatorre@uchicago.edu> | 2020-05-11 10:30:39 -0500 |
commit | 15fc972c89a4366a06755daeedaac52f91762ecd (patch) | |
tree | 9a5dbea7787cef9946473787e9a3996f24cd2898 /utils/plot-energy | |
parent | 651cbe5d261a6d29b4dec7c38b65c0eac5431363 (diff) | |
download | sddm-15fc972c89a4366a06755daeedaac52f91762ecd.tar.gz sddm-15fc972c89a4366a06755daeedaac52f91762ecd.tar.bz2 sddm-15fc972c89a4366a06755daeedaac52f91762ecd.zip |
update utils/ folder to make a python package called sddm
This commit adds an sddm python package to the utils/ folder. This allows me to
consolidate code used across all the various scripts. This package is now
installed by default to /home/tlatorre/local/lib/python2.7/site-packages so you
should add the following to your .bashrc file:
export PYTHONPATH=$HOME/local/lib/python2.7/site-packages/:$PYTHONPATH
before using the scripts installed to ~/local/bin.
Diffstat (limited to 'utils/plot-energy')
-rwxr-xr-x | utils/plot-energy | 675 |
1 files changed, 43 insertions, 632 deletions
diff --git a/utils/plot-energy b/utils/plot-energy index a057302..5c33969 100755 --- a/utils/plot-energy +++ b/utils/plot-energy @@ -37,61 +37,8 @@ from scipy.stats import iqr, norm, beta from scipy.special import spence from itertools import izip_longest -PSUP_RADIUS = 840.0 - -# from https://stackoverflow.com/questions/287871/how-to-print-colored-text-in-terminal-in-python -class bcolors: - HEADER = '\033[95m' - OKBLUE = '\033[94m' - OKGREEN = '\033[92m' - WARNING = '\033[93m' - FAIL = '\033[91m' - ENDC = '\033[0m' - BOLD = '\033[1m' - UNDERLINE = '\033[4m' - -# on retina screens, the default plots are way too small -# by using Qt5 and setting QT_AUTO_SCREEN_SCALE_FACTOR=1 -# Qt5 will scale everything using the dpi in ~/.Xresources -import matplotlib -matplotlib.use("Qt5Agg") - -font = {'family':'serif', 'serif': ['computer modern roman']} -matplotlib.rc('font',**font) - -matplotlib.rc('text', usetex=True) - -SNOMAN_MASS = { - 20: 0.511, - 21: 0.511, - 22: 105.658, - 23: 105.658 -} - -AV_RADIUS = 600.0 - -# Data cleaning bitmasks. -DC_MUON = 0x1 -DC_JUNK = 0x2 -DC_CRATE_ISOTROPY = 0x4 -DC_QVNHIT = 0x8 -DC_NECK = 0x10 -DC_FLASHER = 0x20 -DC_ESUM = 0x40 -DC_OWL = 0x80 -DC_OWL_TRIGGER = 0x100 -DC_FTS = 0x200 -DC_ITC = 0x400 -DC_BREAKDOWN = 0x800 - particle_id = {20: 'e', 22: r'\mu'} -def grouper(iterable, n, fillvalue=None): - "Collect data into fixed-length chunks or blocks" - # grouper('ABCDEFG', 3, 'x') --> ABC DEF Gxx - args = [iter(iterable)] * n - return izip_longest(fillvalue=fillvalue, *args) - def plot_hist2(df, muons=False): for id, df_id in sorted(df.groupby('id')): if id == 20: @@ -148,550 +95,14 @@ def plot_hist(df, muons=False): if len(df): plt.tight_layout() -def chunks(l, n): - """Yield successive n-sized chunks from l.""" - for i in range(0, len(l), n): - yield l[i:i + n] - -def print_warning(msg): - print(bcolors.FAIL + msg + bcolors.ENDC,file=sys.stderr) - -def unwrap(p, delta, axis=-1): - """ - A modified version of np.unwrap() useful for unwrapping the 50 MHz clock. - It unwraps discontinuities bigger than delta/2 by delta. - - Example: - - >>> a = np.arange(10) % 5 - >>> a - array([0, 1, 2, 3, 4, 0, 1, 2, 3, 4]) - >>> unwrap(a,5) - array([ 0., 1., 2., 3., 4., 5., 6., 7., 8., 9.]) - - In the case of the 50 MHz clock delta should be 0x7ffffffffff*20.0. - """ - p = np.asarray(p) - nd = p.ndim - dd = np.diff(p, axis=axis) - slice1 = [slice(None, None)]*nd # full slices - slice1[axis] = slice(1, None) - slice1 = tuple(slice1) - ddmod = np.mod(dd + delta/2, delta) - delta/2 - np.copyto(ddmod, delta/2, where=(ddmod == -delta/2) & (dd > 0)) - ph_correct = ddmod - dd - np.copyto(ph_correct, 0, where=abs(dd) < delta/2) - up = np.array(p, copy=True, dtype='d') - up[slice1] = p[slice1] + ph_correct.cumsum(axis) - return up - -def unwrap_50_mhz_clock(gtr): - """ - Unwrap an array with 50 MHz clock times. These times should all be in - nanoseconds and come from the KEV_GTR variable in the EV bank. - - Note: We assume here that the events are already ordered contiguously by - GTID, so you shouldn't pass an array with multiple runs! - """ - return unwrap(gtr,0x7ffffffffff*20.0) - -def retrigger_cut(ev): - """ - Cuts all retrigger events. - """ - return ev[ev.dt > 500] - -def breakdown_follower_cut(ev): - """ - Cuts all events within 1 second of breakdown events. - """ - breakdowns = ev[ev.dc & DC_BREAKDOWN != 0] - return ev[~np.any((ev.gtr.values > breakdowns.gtr.values[:,np.newaxis]) & \ - (ev.gtr.values < breakdowns.gtr.values[:,np.newaxis] + 1e9),axis=0)] - -def flasher_follower_cut(ev): - """ - Cuts all events within 200 microseconds of flasher events. - """ - flashers = ev[ev.dc & DC_FLASHER != 0] - return ev[~np.any((ev.gtr.values > flashers.gtr.values[:,np.newaxis]) & \ - (ev.gtr.values < flashers.gtr.values[:,np.newaxis] + 200e3),axis=0)] - -def muon_follower_cut(ev): - """ - Cuts all events 200 microseconds after a muon. - """ - muons = ev[ev.dc & DC_MUON != 0] - return ev[~np.any((ev.gtr.values > muons.gtr.values[:,np.newaxis]) & \ - (ev.gtr.values < muons.gtr.values[:,np.newaxis] + 200e3),axis=0)] - -def michel_cut(ev): - """ - Looks for Michel electrons after muons. - """ - prompt_plus_muons = ev[ev.prompt | ((ev.dc & DC_MUON) != 0)] - - # Michel electrons and neutrons can be any event which is not a prompt - # event - follower = ev[~ev.prompt] - - # require Michel events to pass more of the SNO data cleaning cuts - michel = follower[follower.dc & (DC_JUNK | DC_CRATE_ISOTROPY | DC_QVNHIT | DC_FLASHER | DC_NECK | DC_ESUM | DC_OWL | DC_OWL_TRIGGER | DC_FTS) == 0] - - michel = michel[michel.nhit >= 100] - - # Accept events which had a muon more than 800 nanoseconds but less than 20 - # microseconds before them. The 800 nanoseconds cut comes from Richie's - # thesis. He also mentions that the In Time Channel Spread Cut is very - # effective at cutting electron events caused by muons, so I should - # implement that. - # - # Note: We currently don't look across run boundaries. This should be a - # *very* small effect, and the logic to do so would be very complicated - # since I would have to deal with 50 MHz clock rollovers, etc. - if prompt_plus_muons.size and michel.size: - mask = (michel.gtr.values > prompt_plus_muons.gtr.values[:,np.newaxis] + 800) & \ - (michel.gtr.values < prompt_plus_muons.gtr.values[:,np.newaxis] + 20e3) - michel = michel.iloc[np.any(mask,axis=0)] - michel['muon_gtid'] = pd.Series(prompt_plus_muons['gtid'].iloc[np.argmax(mask[:,np.any(mask,axis=0)],axis=0)].values, - index=michel.index.values, - dtype=np.int32) - return michel - else: - # Return an empty slice since we need it to have the same datatype as - # the other dataframes - michel = ev[:0] - michel['muon_gtid'] = -1 - return michel - -def atmospheric_events(ev): - """ - Tags atmospheric events which have a neutron follower. - """ - prompt = ev[ev.prompt] - - # Michel electrons and neutrons can be any event which is not a prompt - # event - follower = ev[~ev.prompt] - - ev['atm'] = np.zeros(len(ev),dtype=np.bool) - - if prompt.size and follower.size: - # neutron followers have to obey stricter set of data cleaning cuts - neutron = follower[follower.dc & (DC_JUNK | DC_CRATE_ISOTROPY | DC_QVNHIT | DC_FLASHER | DC_NECK | DC_ESUM | DC_OWL | DC_OWL_TRIGGER | DC_FTS) == 0] - neutron = neutron[~np.isnan(neutron.ftp_x) & ~np.isnan(neutron.rsp_energy)] - # FIXME: What should the radius cut be here? AV? (r/r_psup)^3 < 0.9? - neutron = neutron[neutron.ftp_r < AV_RADIUS] - neutron = neutron[neutron.rsp_energy > 4.0] - - # neutron events accepted after 20 microseconds and before 250 ms (50 ms during salt) - ev.loc[ev.prompt,'atm'] = np.any((neutron.gtr.values > prompt.gtr.values[:,np.newaxis] + 20e3) & \ - (neutron.gtr.values < prompt.gtr.values[:,np.newaxis] + 250e6),axis=1) - - return ev - -def gtid_sort(ev, first_gtid): - """ - Adds 0x1000000 to the gtid_sort column for all gtids before the first gtid - in a run, which should be passed as a dictionary. This column can then be - used to sort the events sequentially. - - This function should be passed to ev.groupby('run').apply(). We use this - idiom instead of just looping over the groupby results since groupby() - makes a copy of the dataframe, i.e. - - for run, ev_run in ev.groupby('run'): - ev_run.loc[ev_run.gtid < first_gtid[run],'gtid_sort'] += 0x1000000 - - would produce a SettingWithCopyWarning, so instead we use: - - ev = ev.groupby('run',as_index=False).apply(gtid_sort,first_gtid=first_gtid) - - which doesn't have this problem. - """ - # see https://stackoverflow.com/questions/32460593/including-the-group-name-in-the-apply-function-pandas-python - run = ev.name - - if run not in first_gtid: - print_warning("No RHDR bank for run %i! Assuming first event is the first GTID." % run) - first_gtid[run] = ev.gtid.iloc[0] - - ev.loc[ev.gtid < first_gtid[run],'gtid_sort'] += 0x1000000 - - return ev - -def prompt_event(ev): - ev['prompt'] = (ev.nhit >= 100) - ev.loc[ev.prompt,'prompt'] &= np.concatenate(([True],np.diff(ev[ev.prompt].gtr.values) > 250e6)) - return ev - -# Taken from https://raw.githubusercontent.com/mwaskom/seaborn/c73055b2a9d9830c6fbbace07127c370389d04dd/seaborn/utils.py -def despine(fig=None, ax=None, top=True, right=True, left=False, - bottom=False, offset=None, trim=False): - """Remove the top and right spines from plot(s). - - fig : matplotlib figure, optional - Figure to despine all axes of, default uses current figure. - ax : matplotlib axes, optional - Specific axes object to despine. - top, right, left, bottom : boolean, optional - If True, remove that spine. - offset : int or dict, optional - Absolute distance, in points, spines should be moved away - from the axes (negative values move spines inward). A single value - applies to all spines; a dict can be used to set offset values per - side. - trim : bool, optional - If True, limit spines to the smallest and largest major tick - on each non-despined axis. - - Returns - ------- - None - - """ - # Get references to the axes we want - if fig is None and ax is None: - axes = plt.gcf().axes - elif fig is not None: - axes = fig.axes - elif ax is not None: - axes = [ax] - - for ax_i in axes: - for side in ["top", "right", "left", "bottom"]: - # Toggle the spine objects - is_visible = not locals()[side] - ax_i.spines[side].set_visible(is_visible) - if offset is not None and is_visible: - try: - val = offset.get(side, 0) - except AttributeError: - val = offset - _set_spine_position(ax_i.spines[side], ('outward', val)) - - # Potentially move the ticks - if left and not right: - maj_on = any( - t.tick1line.get_visible() - for t in ax_i.yaxis.majorTicks - ) - min_on = any( - t.tick1line.get_visible() - for t in ax_i.yaxis.minorTicks - ) - ax_i.yaxis.set_ticks_position("right") - for t in ax_i.yaxis.majorTicks: - t.tick2line.set_visible(maj_on) - for t in ax_i.yaxis.minorTicks: - t.tick2line.set_visible(min_on) - - if bottom and not top: - maj_on = any( - t.tick1line.get_visible() - for t in ax_i.xaxis.majorTicks - ) - min_on = any( - t.tick1line.get_visible() - for t in ax_i.xaxis.minorTicks - ) - ax_i.xaxis.set_ticks_position("top") - for t in ax_i.xaxis.majorTicks: - t.tick2line.set_visible(maj_on) - for t in ax_i.xaxis.minorTicks: - t.tick2line.set_visible(min_on) - - if trim: - # clip off the parts of the spines that extend past major ticks - xticks = ax_i.get_xticks() - if xticks.size: - firsttick = np.compress(xticks >= min(ax_i.get_xlim()), - xticks)[0] - lasttick = np.compress(xticks <= max(ax_i.get_xlim()), - xticks)[-1] - ax_i.spines['bottom'].set_bounds(firsttick, lasttick) - ax_i.spines['top'].set_bounds(firsttick, lasttick) - newticks = xticks.compress(xticks <= lasttick) - newticks = newticks.compress(newticks >= firsttick) - ax_i.set_xticks(newticks) - - yticks = ax_i.get_yticks() - if yticks.size: - firsttick = np.compress(yticks >= min(ax_i.get_ylim()), - yticks)[0] - lasttick = np.compress(yticks <= max(ax_i.get_ylim()), - yticks)[-1] - ax_i.spines['left'].set_bounds(firsttick, lasttick) - ax_i.spines['right'].set_bounds(firsttick, lasttick) - newticks = yticks.compress(yticks <= lasttick) - newticks = newticks.compress(newticks >= firsttick) - ax_i.set_yticks(newticks) - -def plot_corner_plot(ev, title, save=None): - variables = ['r_psup','psi','z','udotr'] - labels = [r'$(r/r_\mathrm{PSUP})^3$',r'$\psi$','z',r'$\vec{u}\cdot\vec{r}$'] - limits = [(0,1),(0,10),(-840,840),(-1,1)] - cuts = [0.9,6,0,-0.5] - - ev = ev.dropna(subset=variables) - - fig = plt.figure(figsize=(FIGSIZE[0],FIGSIZE[0])) - despine(fig,trim=True) - for i in range(len(variables)): - for j in range(len(variables)): - if j > i: - continue - ax = plt.subplot(len(variables),len(variables),i*len(variables)+j+1) - if i == j: - plt.hist(ev[variables[i]],bins=np.linspace(limits[i][0],limits[i][1],100),histtype='step') - plt.gca().set_xlim(limits[i]) - else: - plt.scatter(ev[variables[j]],ev[variables[i]],s=0.5) - plt.gca().set_xlim(limits[j]) - plt.gca().set_ylim(limits[i]) - n = len(ev) - if n: - p_i_lo = np.count_nonzero(ev[variables[i]] < cuts[i])/n - p_j_lo = np.count_nonzero(ev[variables[j]] < cuts[j])/n - p_lolo = p_i_lo*p_j_lo - p_lohi = p_i_lo*(1-p_j_lo) - p_hilo = (1-p_i_lo)*p_j_lo - p_hihi = (1-p_i_lo)*(1-p_j_lo) - n_lolo = np.count_nonzero((ev[variables[i]] < cuts[i]) & (ev[variables[j]] < cuts[j])) - n_lohi = np.count_nonzero((ev[variables[i]] < cuts[i]) & (ev[variables[j]] >= cuts[j])) - n_hilo = np.count_nonzero((ev[variables[i]] >= cuts[i]) & (ev[variables[j]] < cuts[j])) - n_hihi = np.count_nonzero((ev[variables[i]] >= cuts[i]) & (ev[variables[j]] >= cuts[j])) - observed = np.array([n_lolo,n_lohi,n_hilo,n_hihi]) - expected = n*np.array([p_lolo,p_lohi,p_hilo,p_hihi]) - psi = -poisson.logpmf(observed,expected).sum() + poisson.logpmf(observed,observed).sum() - psi /= np.std(-poisson.logpmf(np.random.poisson(observed,size=(10000,4)),observed).sum(axis=1) + poisson.logpmf(observed,observed).sum()) - plt.title(r"$\psi = %.1f$" % psi) - if i == len(variables) - 1: - plt.xlabel(labels[j]) - else: - plt.setp(ax.get_xticklabels(),visible=False) - if j == 0: - plt.ylabel(labels[i]) - else: - plt.setp(ax.get_yticklabels(),visible=False) - plt.axvline(cuts[j],color='k',ls='--',alpha=0.5) - if i != j: - plt.axhline(cuts[i],color='k',ls='--',alpha=0.5) - - plt.tight_layout() - - if save: - plt.savefig(save + ".pdf") - plt.savefig(save + ".eps") - - plt.suptitle(title) - -def intersect_sphere(pos, dir, R): - """ - Compute the first intersection of a ray starting at `pos` with direction - `dir` and a sphere centered at the origin with radius `R`. The distance to - the intersection is returned. - - Example: - - pos = np.array([0,0,0]) - dir = np.array([1,0,0]) - - l = intersect_sphere(pos,dir,PSUP_RADIUS): - if l is not None: - hit = pos + l*dir - print("ray intersects sphere at %.2f %.2f %.2f", hit[0], hit[1], hit[2]) - else: - print("ray didn't intersect sphere") - """ - - b = 2*np.dot(dir,pos) - c = np.dot(pos,pos) - R*R - - if b*b - 4*c <= 0: - # Ray doesn't intersect the sphere. - return None - - # First, check the shorter solution. - l = (-b - np.sqrt(b*b - 4*c))/2 - - # If the shorter solution is less than 0, check the second solution. - if l < 0: - l = (-b + np.sqrt(b*b - 4*c))/2 - - # If the distance is still negative, we didn't intersect the sphere. - if l < 0: - return None - - return l - -def get_dx(row): - pos = np.array([row.x,row.y,row.z]) - dir = np.array([np.sin(row.theta1)*np.cos(row.phi1), - np.sin(row.theta1)*np.sin(row.phi1), - np.cos(row.theta1)]) - l = intersect_sphere(pos,-dir,PSUP_RADIUS) - if l is not None: - pos -= dir*l - michel_pos = np.array([row.x_michel,row.y_michel,row.z_michel]) - return np.linalg.norm(michel_pos-pos) - else: - return 0 - -def dx_to_energy(dx): - lines = [] - with open("../src/muE_water_liquid.txt") as f: - for i, line in enumerate(f): - if i < 10: - continue - if 'Minimum ionization' in line: - continue - if 'Muon critical energy' in line: - continue - lines.append(line) - data = np.genfromtxt(lines) - return np.interp(dx,data[:,8],data[:,0]) - -def iqr_std_err(x): - """ - Returns the approximate standard deviation assuming the central part of the - distribution is gaussian. - """ - x = x.dropna() - n = len(x) - if n == 0: - return np.nan - # see https://stats.stackexchange.com/questions/110902/error-on-interquartile-range - std = iqr(x.values)/1.3489795 - return 1.573*std/np.sqrt(n) - -def iqr_std(x): - """ - Returns the approximate standard deviation assuming the central part of the - distribution is gaussian. - """ - x = x.dropna() - n = len(x) - if n == 0: - return np.nan - return iqr(x.values)/1.3489795 - -def quantile_error(x,q): - """ - Returns the standard error for the qth quantile of `x`. The error is - computed using the Maritz-Jarrett method described here: - https://www.itl.nist.gov/div898/software/dataplot/refman2/auxillar/quantse.htm. - """ - x = np.sort(x) - n = len(x) - m = int(q*n+0.5) - A = m - 1 - B = n - m - i = np.arange(1,len(x)+1) - w = beta.cdf(i/n,A,B) - beta.cdf((i-1)/n,A,B) - return np.sqrt(np.sum(w*x**2)-np.sum(w*x)**2) - -def q90_err(x): - """ - Returns the error on the 90th percentile for all the non NaN values in a - Series `x`. - """ - x = x.dropna() - n = len(x) - if n == 0: - return np.nan - return quantile_error(x.values,0.9) - -def q90(x): - """ - Returns the 90th percentile for all the non NaN values in a Series `x`. - """ - x = x.dropna() - n = len(x) - if n == 0: - return np.nan - return np.percentile(x.values,90.0) - -def median(x): - """ - Returns the median for all the non NaN values in a Series `x`. - """ - x = x.dropna() - n = len(x) - if n == 0: - return np.nan - return np.median(x.values) - -def median_err(x): - """ - Returns the approximate error on the median for all the non NaN values in a - Series `x`. The error on the median is approximated assuming the central - part of the distribution is gaussian. - """ - x = x.dropna() - n = len(x) - if n == 0: - return np.nan - # First we estimate the standard deviation using the interquartile range. - # Here we are essentially assuming the central part of the distribution is - # gaussian. - std = iqr(x.values)/1.3489795 - median = np.median(x.values) - # Now we estimate the error on the median for a gaussian - # See https://stats.stackexchange.com/questions/45124/central-limit-theorem-for-sample-medians. - return 1/(2*np.sqrt(n)*norm.pdf(median,median,std)) - -def std_err(x): - x = x.dropna() - mean = np.mean(x) - std = np.std(x) - n = len(x) - if n == 0: - return np.nan - elif n == 1: - return 0.0 - u4 = np.mean((x-mean)**4) - error = np.sqrt((u4-(n-3)*std**4/(n-1))/n)/(2*std) - return error - -# Fermi constant -GF = 1.16637887e-5 # 1/MeV^2 -ELECTRON_MASS = 0.5109989461 # MeV -MUON_MASS = 105.6583745 # MeV -PROTON_MASS = 938.272081 # MeV -FINE_STRUCTURE_CONSTANT = 7.297352566417e-3 - -def f(x): - y = (5/(3*x**2) + 16*x/3 + 4/x + (12-8*x)*np.log(1/x-1) - 8)*np.log(MUON_MASS/ELECTRON_MASS) - y += (6-4*x)*(2*spence(x) - 2*np.log(x)**2 + np.log(x) + np.log(1-x)*(3*np.log(x)-1/x-1) - np.pi**2/3-2) - y += (1-x)*(34*x**2+(5-34*x**2+17*x)*np.log(x) - 22*x)/(3*x**2) - y += 6*(1-x)*np.log(x) - return y - -def michel_spectrum(T): - """ - Michel electron energy spectrum for a free muon. `T` should be the kinetic - energy of the electron or positron in MeV. - - Note: The result is not normalized. - - From https://arxiv.org/abs/1406.3575. - """ - E = T + ELECTRON_MASS - x = 2*E/MUON_MASS - mask = (x > 0) & (x < 1) - y = np.zeros_like(x,dtype=np.double) - y[mask] = GF**2*MUON_MASS**5*x[mask]**2*(6-4*x[mask]+FINE_STRUCTURE_CONSTANT*f(x[mask])/np.pi)/(192*np.pi**3) - y *= 2*MUON_MASS - return y - if __name__ == '__main__': import argparse - import matplotlib.pyplot as plt import numpy as np import pandas as pd import sys import h5py + from sddm.plot_energy import * + from sddm.plot import despine parser = argparse.ArgumentParser("plot fit results") parser.add_argument("filenames", nargs='+', help="input files") @@ -699,6 +110,47 @@ if __name__ == '__main__': parser.add_argument("--save", action='store_true', default=False, help="save corner plots for backgrounds") args = parser.parse_args() + if args.save: + # default \textwidth for a fullpage article in Latex is 16.50764 cm. + # You can figure this out by compiling the following TeX document: + # + # \documentclass{article} + # \usepackage{fullpage} + # \usepackage{layouts} + # \begin{document} + # textwidth in cm: \printinunitsof{cm}\printlen{\textwidth} + # \end{document} + + width = 16.50764 + width /= 2.54 # cm -> inches + # According to this page: + # http://www-personal.umich.edu/~jpboyd/eng403_chap2_tuftegospel.pdf, + # Tufte suggests an aspect ratio of 1.5 - 1.6. + height = width/1.5 + FIGSIZE = (width,height) + + import matplotlib.pyplot as plt + + font = {'family':'serif', 'serif': ['computer modern roman']} + plt.rc('font',**font) + + plt.rc('text', usetex=True) + else: + # on retina screens, the default plots are way too small + # by using Qt5 and setting QT_AUTO_SCREEN_SCALE_FACTOR=1 + # Qt5 will scale everything using the dpi in ~/.Xresources + import matplotlib + matplotlib.use("Qt5Agg") + + import matplotlib.pyplot as plt + + # Default figure size. Currently set to my monitor width and height so that + # things are properly formatted + FIGSIZE = (13.78,7.48) + + # Make the defalt font bigger + plt.rc('font', size=22) + ev = pd.concat([pd.read_hdf(filename, "ev") for filename in args.filenames],ignore_index=True) fits = pd.concat([pd.read_hdf(filename, "fits") for filename in args.filenames],ignore_index=True) rhdr = pd.concat([pd.read_hdf(filename, "rhdr") for filename in args.filenames],ignore_index=True) @@ -834,47 +286,6 @@ if __name__ == '__main__': # retrigger cut ev = ev.groupby('run',group_keys=False).apply(retrigger_cut) - if args.save: - # default \textwidth for a fullpage article in Latex is 16.50764 cm. - # You can figure this out by compiling the following TeX document: - # - # \documentclass{article} - # \usepackage{fullpage} - # \usepackage{layouts} - # \begin{document} - # textwidth in cm: \printinunitsof{cm}\prntlen{\textwidth} - # \end{document} - - width = 16.50764 - width /= 2.54 # cm -> inches - # According to this page: - # http://www-personal.umich.edu/~jpboyd/eng403_chap2_tuftegospel.pdf, - # Tufte suggests an aspect ratio of 1.5 - 1.6. - height = width/1.5 - FIGSIZE = (width,height) - - import matplotlib.pyplot as plt - - font = {'family':'serif', 'serif': ['computer modern roman']} - plt.rc('font',**font) - - plt.rc('text', usetex=True) - else: - # on retina screens, the default plots are way too small - # by using Qt5 and setting QT_AUTO_SCREEN_SCALE_FACTOR=1 - # Qt5 will scale everything using the dpi in ~/.Xresources - import matplotlib - matplotlib.use("Qt5Agg") - - import matplotlib.pyplot as plt - - # Default figure size. Currently set to my monitor width and height so that - # things are properly formatted - FIGSIZE = (13.78,7.48) - - # Make the defalt font bigger - plt.rc('font', size=22) - if args.dc: ev = ev[ev.prompt] |