diff options
author | tlatorre <tlatorre@uchicago.edu> | 2020-05-12 11:34:47 -0500 |
---|---|---|
committer | tlatorre <tlatorre@uchicago.edu> | 2020-05-12 11:34:47 -0500 |
commit | 764bf1b496de0d3d3a22b988a0634ea68434bb26 (patch) | |
tree | 83dde566645f6b7f1abef44ae9654bb62482a0ac /utils/dc | |
parent | c24438b1fa9d368f2b05d623c7a2cb0d27852cfc (diff) | |
download | sddm-764bf1b496de0d3d3a22b988a0634ea68434bb26.tar.gz sddm-764bf1b496de0d3d3a22b988a0634ea68434bb26.tar.bz2 sddm-764bf1b496de0d3d3a22b988a0634ea68434bb26.zip |
add a script to do a closure test on the contamination analysis
Diffstat (limited to 'utils/dc')
-rwxr-xr-x | utils/dc | 217 |
1 files changed, 39 insertions, 178 deletions
@@ -266,178 +266,20 @@ if __name__ == '__main__': import pandas as pd import sys import h5py + from sddm import setup_matplotlib parser = argparse.ArgumentParser("plot fit results") parser.add_argument("filenames", nargs='+', help="input files") parser.add_argument("--steps", type=int, default=100000, help="number of steps in the MCMC chain") parser.add_argument("--save", action="store_true", default=False, help="save plots") + parser.add_argument("--mc", nargs='+', required=True, help="atmospheric MC files") args = parser.parse_args() - if args.save: - # default \textwidth for a fullpage article in Latex is 16.50764 cm. - # You can figure this out by compiling the following TeX document: - # - # \documentclass{article} - # \usepackage{fullpage} - # \usepackage{layouts} - # \begin{document} - # textwidth in cm: \printinunitsof{cm}\prntlen{\textwidth} - # \end{document} - - width = 16.50764 - width /= 2.54 # cm -> inches - # According to this page: - # http://www-personal.umich.edu/~jpboyd/eng403_chap2_tuftegospel.pdf, - # Tufte suggests an aspect ratio of 1.5 - 1.6. - height = width/1.5 - FIGSIZE = (width,height) - - import matplotlib.pyplot as plt - - font = {'family':'serif', 'serif': ['computer modern roman']} - plt.rc('font',**font) - - plt.rc('text', usetex=True) - else: - # on retina screens, the default plots are way too small - # by using Qt5 and setting QT_AUTO_SCREEN_SCALE_FACTOR=1 - # Qt5 will scale everything using the dpi in ~/.Xresources - import matplotlib - matplotlib.use("Qt5Agg") - - import matplotlib.pyplot as plt - - # Default figure size. Currently set to my monitor width and height so that - # things are properly formatted - FIGSIZE = (13.78,7.48) - - # Make the defalt font bigger - plt.rc('font', size=22) - - for filename in args.filenames: - ev = pd.read_hdf(filename,"ev") - - ev = pd.concat([pd.read_hdf(filename, "ev") for filename in args.filenames],ignore_index=True) - fits = pd.concat([pd.read_hdf(filename, "fits") for filename in args.filenames],ignore_index=True) - rhdr = pd.concat([pd.read_hdf(filename, "rhdr") for filename in args.filenames],ignore_index=True) - - first_gtid = rhdr.set_index('run').to_dict()['first_gtid'] - - # First, remove junk events since orphans won't have a 50 MHz clock and so - # could screw up the 50 MHz clock unwrapping - ev = ev[ev.dc & DC_JUNK == 0] - - # We need the events to be in time order here in order to calculate the - # delta t between events. It's not obvious exactly how to do this. You - # could sort by GTID, but that wraps around. Similarly we can't sort by the - # 50 MHz clock because it also wraps around. Finally, I'm hesitant to sort - # by the 10 MHz clock since it can be unreliable. - # - # Update: Phil proposed a clever way to get the events in order using the - # GTID: - # - # > The GTID rollover should be easy to handle because there should never - # > be two identical GTID's in a run. So if you order the events by GTID, - # > you can assume that events with GTID's that come logically before the - # > first GTID in the run must have occurred after the other events. - # - # Therefore, we can just add 0x1000000 to all GTIDs before the first GTID - # in the event and sort on that. We get the first GTID from the RHDR bank. - ev['gtid_sort'] = ev['gtid'].copy() - - ev = ev.groupby('run',as_index=False).apply(gtid_sort,first_gtid=first_gtid).reset_index(level=0,drop=True) - - ev = ev.sort_values(by=['run','gtid_sort'],kind='mergesort') - - for run, ev_run in ev.groupby('run'): - # Warn about 50 MHz clock jumps since they could indicate that the - # events aren't in order. - dt = np.diff(ev_run.gtr) - if np.count_nonzero((np.abs(dt) > 1e9) & (dt > -0x7ffffffffff*20.0/2)): - print_warning("Warning: %i 50 MHz clock jumps in run %i. Are the events in order?" % \ - (np.count_nonzero((np.abs(dt) > 1e9) & (dt > -0x7ffffffffff*20.0/2)),run)) - - # unwrap the 50 MHz clock within each run - ev.gtr = ev.groupby(['run'],as_index=False)['gtr'].transform(unwrap_50_mhz_clock) - - for run, ev_run in ev.groupby('run'): - # Warn about GTID jumps since we could be missing a potential flasher - # and/or breakdown, and we need all the events in order to do a - # retrigger cut - if np.count_nonzero(np.diff(ev_run.gtid) != 1): - print_warning("Warning: %i GTID jumps in run %i" % (np.count_nonzero(np.diff(ev_run.gtid) != 1),run)) - - # calculate the time difference between each event and the previous event - # so we can tag retrigger events - ev['dt'] = ev.groupby(['run'],as_index=False)['gtr'].transform(lambda x: np.concatenate(([1e9],np.diff(x.values)))) - - # Calculate the approximate Ockham factor. - # See Chapter 20 in "Probability Theory: The Logic of Science" by Jaynes - # - # Note: This is a really approximate form by assuming that the shape of - # the likelihood space is equal to the average uncertainty in the - # different parameters. - fits['w'] = fits['n']*np.log(0.05/10e3) + np.log(fits['energy1']) + fits['n']*np.log(1e-4/(4*np.pi)) - fits['w'] -= fits['n']*100 - - # Note: we index on the left hand site with loc to avoid a copy error - # - # See https://www.dataquest.io/blog/settingwithcopywarning/ - fits.loc[fits['n'] > 1, 'w'] += np.log(fits[fits['n'] > 1]['energy2']) - fits.loc[fits['n'] > 2, 'w'] += np.log(fits[fits['n'] > 2]['energy3']) - - fits['fmin'] = fits['fmin'] - fits['w'] - - fits['ke'] = fits['energy1'] - fits['id'] = fits['id1'] - fits.loc[fits['n'] == 2, 'id'] = fits['id1']*100 + fits['id2'] - fits.loc[fits['n'] == 3, 'id'] = fits['id1']*10000 + fits['id2']*100 + fits['id3'] - fits['theta'] = fits['theta1'] - - print("number of events = %i" % len(ev)) - - # Now, select prompt events. - # - # We define a prompt event here as any event with an NHIT > 100 and whose - # previous > 100 nhit event was more than 250 ms ago - # - # Note: It's important we do this *before* applying the data cleaning cuts - # since otherwise we may have a prompt event identified only after the - # cuts. - # - # For example, suppose there was a breakdown and for whatever reason - # the *second* event after the breakdown didn't get tagged correctly. If we - # apply the data cleaning cuts first and then tag prompt events then this - # event will get tagged as a prompt event. - ev = ev.groupby('run',as_index=False).apply(prompt_event).reset_index(level=0,drop=True) - - print("number of events after prompt nhit cut = %i" % np.count_nonzero(ev.prompt)) - - # flasher follower cut - ev = ev.groupby('run',as_index=False).apply(flasher_follower_cut).reset_index(level=0,drop=True) - - # breakdown follower cut - ev = ev.groupby('run',as_index=False).apply(breakdown_follower_cut).reset_index(level=0,drop=True) - - # retrigger cut - ev = ev.groupby('run',as_index=False).apply(retrigger_cut).reset_index(level=0,drop=True) - - ev = ev[ev.prompt] - - ev.set_index(['run','gtid']) - - ev = pd.merge(fits,ev,how='inner',on=['run','gtid']) - ev_single_particle = ev[(ev.id2 == 0) & (ev.id3 == 0)] - ev_single_particle = ev_single_particle.sort_values('fmin').groupby(['run','gtid']).nth(0) - ev = ev.sort_values('fmin').groupby(['run','gtid']).nth(0) - ev['psi'] /= ev.nhit_cal - - ev['cos_theta'] = np.cos(ev_single_particle['theta1']) - ev['r'] = np.sqrt(ev.x**2 + ev.y**2 + ev.z**2) - ev['udotr'] = np.sin(ev_single_particle.theta1)*np.cos(ev_single_particle.phi1)*ev_single_particle.x + \ - np.sin(ev_single_particle.theta1)*np.sin(ev_single_particle.phi1)*ev_single_particle.y + \ - np.cos(ev_single_particle.theta1)*ev_single_particle.z - ev['udotr'] /= ev.r + setup_matplotlib(args.save) + + import matplotlib.pyplot as plt + + ev = get_events(args.filenames,merge_fits=True) # figure out bins for high level variables ev = radius_cut(ev) @@ -459,14 +301,33 @@ if __name__ == '__main__': for _, row in ev[ev[bg]].iterrows(): data[bg][row.radius_cut][row.psi_cut][row.z_cut][row.udotr_cut] += 1 - # FIXME: Estimate for now, needs to come from MC - sacrifice = {bg: 0.0 for bg in ['muon','noise','neck','flasher','breakdown']} - sacrifice['signal'] = np.zeros((len(np.unique(ev.radius_cut)),len(np.unique(ev.psi_cut)),len(np.unique(ev.cos_theta_cut)),len(np.unique(ev.z_cut))),dtype=int) - p_r_signal = np.array([0.9,0.1]) - p_psi_signal = np.array([1.0,0.0]) - p_z_signal = np.array([0.5,0.5]) - p_udotr_signal = np.array([0.25,0.75]) - sacrifice['signal'] = p_r_signal[:,np.newaxis,np.newaxis,np.newaxis]*p_psi_signal[:,np.newaxis,np.newaxis]*p_z_signal[:,np.newaxis]*p_udotr_signal + ev_mc = get_events(args.mc, merge_fits=True) + + ev_mc = ev_mc[ev_mc.prompt] + + # figure out bins for high level variables + ev_mc = radius_cut(ev_mc) + ev_mc = psi_cut(ev_mc) + ev_mc = cos_theta_cut(ev_mc) + ev_mc = z_cut(ev_mc) + ev_mc = udotr_cut(ev_mc) + + ev_mc['noise'] = ev_mc.dc & (DC_JUNK | DC_CRATE_ISOTROPY | DC_QVNHIT | DC_ITC | DC_ESUM) != 0 + ev_mc['neck'] = ((ev_mc.dc & DC_NECK) != 0) & ~ev_mc.noise + ev_mc['flasher'] = ((ev_mc.dc & DC_FLASHER) != 0) & ~(ev_mc.noise | ev_mc.neck) & (ev_mc.nhit < 1000) + ev_mc['breakdown'] = ((ev_mc.dc & (DC_FLASHER | DC_BREAKDOWN)) != 0) & ~(ev_mc.noise | ev_mc.neck) & (ev_mc.nhit >= 1000) + ev_mc['muon'] = ((ev_mc.dc & DC_MUON) != 0) & ~(ev_mc.noise | ev_mc.neck | ev_mc.flasher | ev_mc.breakdown) + ev_mc['signal'] = ~(ev_mc.noise | ev_mc.neck | ev_mc.flasher | ev_mc.breakdown | ev_mc.muon) + + # FIXME: Double check that what I'm calculating here matches with what I + # expect + sacrifice = {} + for bg in ['signal','muon','noise','neck','flasher','breakdown']: + sacrifice[bg] = np.zeros((2,2,2,2),dtype=float) + for _, row in ev_mc[ev_mc[bg]].iterrows(): + sacrifice[bg][row.radius_cut][row.psi_cut][row.z_cut][row.udotr_cut] += 1 + + sacrifice[bg] /= len(ev_mc) constraints = [flasher_r_udotr, breakdown_r_udotr,muon_r_psi_z_udotr,neck_r_z_udotr,noise_z_udotr] nll = make_nll(data,sacrifice,constraints) @@ -616,7 +477,7 @@ if __name__ == '__main__': # Plot walker positions as a function of step number for the expected # number of events - fig, axes = plt.subplots(6, figsize=FIGSIZE, num=1, sharex=True) + fig, axes = plt.subplots(6, num=1, sharex=True) samples = sampler.get_chain() labels = ["Signal","Muon","Noise","Neck","Flasher","Breakdown"] for i, bg in enumerate(['signal','muon','noise','neck','flasher','breakdown']): @@ -631,7 +492,7 @@ if __name__ == '__main__': # Plot walker positions as a function of step number for the background cut # efficiencies - fig, axes = plt.subplots(5, figsize=FIGSIZE, num=2, sharex=True) + fig, axes = plt.subplots(5, num=2, sharex=True) samples = sampler.get_chain() tag_labels = ['M','N','Ne','F','B'] for i, bg in enumerate(['muon','noise','neck','flasher','breakdown']): @@ -646,7 +507,7 @@ if __name__ == '__main__': samples = sampler.chain.reshape((-1,len(x0))) - plt.figure(3, figsize=FIGSIZE) + plt.figure(3) for i, bg in enumerate(['signal','muon','noise','neck','flasher','breakdown']): ax = plt.subplot(3,2,i+1) plt.hist(samples[:,i],bins=100,histtype='step') @@ -656,7 +517,7 @@ if __name__ == '__main__': plt.legend() plt.tight_layout() - plt.figure(4, figsize=FIGSIZE) + plt.figure(4) for i, bg in enumerate(['muon','noise','neck','flasher','breakdown']): ax = plt.subplot(3,2,i+1) plt.hist(samples[:,6+i],bins=100,histtype='step') @@ -732,7 +593,7 @@ if __name__ == '__main__': p_psi_breakdown_lo] ylim_max = 0 - fig = plt.figure(5, figsize=FIGSIZE) + fig = plt.figure(5) axes = [] for i, bg in enumerate(['signal','muon','noise','neck','flasher','breakdown']): axes.append(plt.subplot(3,2,i+1)) |