aboutsummaryrefslogtreecommitdiff
path: root/utils/dc
diff options
context:
space:
mode:
authortlatorre <tlatorre@uchicago.edu>2020-05-12 14:02:58 -0500
committertlatorre <tlatorre@uchicago.edu>2020-05-12 14:02:58 -0500
commit40d962936761cb356d021fa1d4413974c8a65c7a (patch)
tree4b05212f7492267b63a1490bac90964c420a960b /utils/dc
parent28777814e8c2341d3f1349c7df988fb9316134c7 (diff)
downloadsddm-40d962936761cb356d021fa1d4413974c8a65c7a.tar.gz
sddm-40d962936761cb356d021fa1d4413974c8a65c7a.tar.bz2
sddm-40d962936761cb356d021fa1d4413974c8a65c7a.zip
speed up the contamination analysis script
Diffstat (limited to 'utils/dc')
-rwxr-xr-xutils/dc12
1 files changed, 6 insertions, 6 deletions
diff --git a/utils/dc b/utils/dc
index 16591df..834c6e5 100755
--- a/utils/dc
+++ b/utils/dc
@@ -185,7 +185,7 @@ def make_nll(data, sacrifice, constraints):
[p_r_psi_z_udotr_muon_hihihilo, p_r_psi_z_udotr_muon_hihihihi]]]])
expected_muon = p_muon*contamination_muon*mu_muon + sacrifice['muon']*mu_signal
- nll -= poisson.logpmf(data['muon'],expected_muon).sum()
+ nll -= fast_poisson_logpmf(data['muon'],expected_muon).sum()
# Noise events
p_r_noise = np.array([p_r_noise_lo,1-p_r_noise_lo])
@@ -196,7 +196,7 @@ def make_nll(data, sacrifice, constraints):
p_noise = p_r_noise[:,np.newaxis,np.newaxis,np.newaxis]*p_psi_noise[:,np.newaxis,np.newaxis]*p_z_udotr_noise
expected_noise = p_noise*contamination_noise*mu_noise + sacrifice['noise']*mu_signal
- nll -= poisson.logpmf(data['noise'],expected_noise).sum()
+ nll -= fast_poisson_logpmf(data['noise'],expected_noise).sum()
# Neck events
# FIXME: for now assume parameterized same as muon
@@ -211,7 +211,7 @@ def make_nll(data, sacrifice, constraints):
# FIXME: pdf should be different for muon given neck
expected_neck += p_muon*p_neck_given_muon*mu_muon
- nll -= poisson.logpmf(data['neck'],expected_neck).sum()
+ nll -= fast_poisson_logpmf(data['neck'],expected_neck).sum()
# Flasher events
p_r_udotr_flasher = np.array([\
@@ -222,7 +222,7 @@ def make_nll(data, sacrifice, constraints):
p_flasher = p_r_udotr_flasher[:,np.newaxis,np.newaxis,:]*p_psi_flasher[:,np.newaxis,np.newaxis]*p_z_flasher[:,np.newaxis]
expected_flasher = p_flasher*contamination_flasher*mu_flasher + sacrifice['flasher']*mu_signal
- nll -= poisson.logpmf(data['flasher'],expected_flasher).sum()
+ nll -= fast_poisson_logpmf(data['flasher'],expected_flasher).sum()
# Breakdown events
p_r_udotr_breakdown = np.array([\
@@ -233,7 +233,7 @@ def make_nll(data, sacrifice, constraints):
p_breakdown = p_r_udotr_breakdown[:,np.newaxis,np.newaxis,:]*p_psi_breakdown[:,np.newaxis,np.newaxis]*p_z_breakdown[:,np.newaxis]
expected_breakdown = p_breakdown*contamination_breakdown*mu_breakdown + sacrifice['breakdown']*mu_signal
- nll -= poisson.logpmf(data['breakdown'],expected_breakdown).sum()
+ nll -= fast_poisson_logpmf(data['breakdown'],expected_breakdown).sum()
# Signal like events
expected_signal = np.zeros_like(expected_muon)
@@ -244,7 +244,7 @@ def make_nll(data, sacrifice, constraints):
expected_signal += p_flasher*(1-contamination_flasher)*mu_flasher
expected_signal += p_breakdown*(1-contamination_breakdown)*mu_breakdown
- nll -= poisson.logpmf(data['signal'],expected_signal).sum()
+ nll -= fast_poisson_logpmf(data['signal'],expected_signal).sum()
if not np.isfinite(nll):
print("x = ", x)