aboutsummaryrefslogtreecommitdiff
path: root/utils/dc-closure-test
diff options
context:
space:
mode:
authortlatorre <tlatorre@uchicago.edu>2020-05-12 11:34:47 -0500
committertlatorre <tlatorre@uchicago.edu>2020-05-12 11:34:47 -0500
commit764bf1b496de0d3d3a22b988a0634ea68434bb26 (patch)
tree83dde566645f6b7f1abef44ae9654bb62482a0ac /utils/dc-closure-test
parentc24438b1fa9d368f2b05d623c7a2cb0d27852cfc (diff)
downloadsddm-764bf1b496de0d3d3a22b988a0634ea68434bb26.tar.gz
sddm-764bf1b496de0d3d3a22b988a0634ea68434bb26.tar.bz2
sddm-764bf1b496de0d3d3a22b988a0634ea68434bb26.zip
add a script to do a closure test on the contamination analysis
Diffstat (limited to 'utils/dc-closure-test')
-rwxr-xr-xutils/dc-closure-test555
1 files changed, 555 insertions, 0 deletions
diff --git a/utils/dc-closure-test b/utils/dc-closure-test
new file mode 100755
index 0000000..54d2629
--- /dev/null
+++ b/utils/dc-closure-test
@@ -0,0 +1,555 @@
+#!/usr/bin/env python
+# Copyright (c) 2019, Anthony Latorre <tlatorre at uchicago>
+#
+# This program is free software: you can redistribute it and/or modify it
+# under the terms of the GNU General Public License as published by the Free
+# Software Foundation, either version 3 of the License, or (at your option)
+# any later version.
+#
+# This program is distributed in the hope that it will be useful, but WITHOUT
+# ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
+# FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for
+# more details.
+#
+# You should have received a copy of the GNU General Public License along with
+# this program. If not, see <https://www.gnu.org/licenses/>.
+
+from __future__ import print_function, division
+import numpy as np
+from scipy.stats import iqr
+import nlopt
+from scipy.stats import poisson
+import contextlib
+import sys
+from math import exp
+import emcee
+from scipy.optimize import brentq
+from scipy.stats import truncnorm
+from matplotlib.lines import Line2D
+from sddm.plot import despine
+from sddm.dc import *
+from sddm.plot_energy import *
+
+try:
+ from emcee import moves
+except ImportError:
+ print("emcee version 2.2.1 is required",file=sys.stderr)
+ sys.exit(1)
+
+# from https://stackoverflow.com/questions/2891790/how-to-pretty-print-a-numpy-array-without-scientific-notation-and-with-given-pre
+@contextlib.contextmanager
+def printoptions(*args, **kwargs):
+ original = np.get_printoptions()
+ np.set_printoptions(*args, **kwargs)
+ try:
+ yield
+ finally:
+ np.set_printoptions(**original)
+
+def radius_cut(ev):
+ ev['radius_cut'] = np.digitize((ev.r/PSUP_RADIUS)**3,(0.9,))
+ return ev
+
+def udotr_cut(ev):
+ ev['udotr_cut'] = np.digitize(ev.udotr,(-0.5,))
+ return ev
+
+def psi_cut(ev):
+ ev['psi_cut'] = np.digitize(ev.psi,(6.0,))
+ return ev
+
+def cos_theta_cut(ev):
+ ev['cos_theta_cut'] = np.digitize(ev.cos_theta,(-0.5,))
+ return ev
+
+def z_cut(ev):
+ ev['z_cut'] = np.digitize(ev.z,(0.0,))
+ return ev
+
+# Constraint to enforce the fact that P(r,psi,z,udotr|muon) all add up to 1.0.
+# In the likelihood function we set the last possibility for r and udotr equal
+# to 1.0 minus the others. Therefore, we need to enforce the fact that the
+# others must add up to less than 1.
+muon_r_psi_z_udotr = Constraint(range(11,26))
+
+# Constraint to enforce the fact that P(z,udotr|noise) all add up to 1.0. In
+# the likelihood function we set the last possibility for r and udotr equal to
+# 1.0 minus the others. Therefore, we need to enforce the fact that the others
+# must add up to less than 1.
+noise_z_udotr = Constraint(range(28,31))
+
+# Constraint to enforce the fact that P(r,z,udotr|neck) all add up to 1.0. In
+# the likelihood function we set the last possibility for r and udotr equal to
+# 1.0 minus the others. Therefore, we need to enforce the fact that the others
+# must add up to less than 1.
+neck_r_z_udotr = Constraint(range(31,38))
+
+# Constraint to enforce the fact that P(r,udotr|flasher) all add up to 1.0. In
+# the likelihood function we set the last possibility for r and udotr equal to
+# 1.0 minus the others. Therefore, we need to enforce the fact that the others
+# must add up to less than 1
+flasher_r_udotr = Constraint(range(39,42))
+
+# Constraint to enforce the fact that P(r,udotr|breakdown) all add up to 1.0.
+# In the likelihood function we set the last possibility for r and udotr equal
+# to 1.0 minus the others. Therefore, we need to enforce the fact that the
+# others must add up to less than 1.
+breakdown_r_udotr = Constraint(range(44,47))
+
+def make_nll(data, sacrifice, constraints):
+ def nll(x, grad=None, fill_value=1e9):
+ if grad is not None and grad.size > 0:
+ raise Exception("nll got passed grad!")
+
+ nll = 0.0
+ # Here we explicitly return a crazy high value if one of the
+ # constraints is violated. When using nlopt it should respect all the
+ # constraints, *but* later when we do the Metropolis Hastings algorithm
+ # we don't have any way to add the constraints explicitly.
+ for constraint in constraints:
+ if constraint(x) > 0:
+ nll += fill_value + 1e4*constraint(x)**2
+
+ if (x <= 0).any() or (x[6:] >= 1).any():
+ nll += fill_value + 1e4*np.sum((x[x < 0])**2) + 1e4*np.sum((x[6:][x[6:] > 1]-1)**2)
+
+ if nll:
+ return nll
+
+ (mu_signal, mu_muon, mu_noise, mu_neck, mu_flasher, mu_breakdown,
+ contamination_muon, contamination_noise, contamination_neck, contamination_flasher, contamination_breakdown,
+ p_r_psi_z_udotr_muon_lolololo, # 11
+ p_r_psi_z_udotr_muon_lololohi,
+ p_r_psi_z_udotr_muon_lolohilo,
+ p_r_psi_z_udotr_muon_lolohihi,
+ p_r_psi_z_udotr_muon_lohilolo,
+ p_r_psi_z_udotr_muon_lohilohi,
+ p_r_psi_z_udotr_muon_lohihilo,
+ p_r_psi_z_udotr_muon_lohihihi,
+ p_r_psi_z_udotr_muon_hilololo,
+ p_r_psi_z_udotr_muon_hilolohi,
+ p_r_psi_z_udotr_muon_hilohilo,
+ p_r_psi_z_udotr_muon_hilohihi,
+ p_r_psi_z_udotr_muon_hihilolo,
+ p_r_psi_z_udotr_muon_hihilohi,
+ p_r_psi_z_udotr_muon_hihihilo,
+ p_r_noise_lo, p_psi_noise_lo, # 26, 27
+ p_z_udotr_noise_lolo, # 28
+ p_z_udotr_noise_lohi,
+ p_z_udotr_noise_hilo,
+ p_r_z_udotr_neck_lololo, # 31
+ p_r_z_udotr_neck_lolohi,
+ p_r_z_udotr_neck_lohilo,
+ p_r_z_udotr_neck_lohihi,
+ p_r_z_udotr_neck_hilolo,
+ p_r_z_udotr_neck_hilohi,
+ p_r_z_udotr_neck_hihilo,
+ p_psi_neck_lo, # 38
+ p_r_udotr_flasher_lolo, p_r_udotr_flasher_lohi, p_r_udotr_flasher_hilo, # 39, ..., 41
+ p_psi_flasher_lo, p_z_flasher_lo,
+ p_r_udotr_breakdown_lolo, p_r_udotr_breakdown_lohi, p_r_udotr_breakdown_hilo, # 44, ..., 46
+ p_psi_breakdown_lo, p_z_breakdown_lo,
+ p_neck_given_muon) = x
+
+ p_r_udotr_flasher_hihi = 1-p_r_udotr_flasher_lolo-p_r_udotr_flasher_lohi-p_r_udotr_flasher_hilo
+ p_r_udotr_breakdown_hihi = 1-p_r_udotr_breakdown_lolo-p_r_udotr_breakdown_lohi-p_r_udotr_breakdown_hilo
+ p_r_psi_z_udotr_muon_hihihihi = 1 - \
+ p_r_psi_z_udotr_muon_lolololo - \
+ p_r_psi_z_udotr_muon_lololohi - \
+ p_r_psi_z_udotr_muon_lolohilo - \
+ p_r_psi_z_udotr_muon_lolohihi - \
+ p_r_psi_z_udotr_muon_lohilolo - \
+ p_r_psi_z_udotr_muon_lohilohi - \
+ p_r_psi_z_udotr_muon_lohihilo - \
+ p_r_psi_z_udotr_muon_lohihihi - \
+ p_r_psi_z_udotr_muon_hilololo - \
+ p_r_psi_z_udotr_muon_hilolohi - \
+ p_r_psi_z_udotr_muon_hilohilo - \
+ p_r_psi_z_udotr_muon_hilohihi - \
+ p_r_psi_z_udotr_muon_hihilolo - \
+ p_r_psi_z_udotr_muon_hihilohi - \
+ p_r_psi_z_udotr_muon_hihihilo
+ p_r_z_udotr_neck_hihihi = 1 - p_r_z_udotr_neck_lololo - p_r_z_udotr_neck_lolohi - p_r_z_udotr_neck_lohilo - p_r_z_udotr_neck_lohihi - p_r_z_udotr_neck_hilolo - p_r_z_udotr_neck_hilohi - p_r_z_udotr_neck_hihilo
+ p_z_udotr_noise_hihi = 1 - p_z_udotr_noise_lolo - p_z_udotr_noise_lohi - p_z_udotr_noise_hilo
+
+ # Muon events
+ # first 6 parameters are the mean number of signal and bgs
+ p_muon = np.array([\
+ [[[p_r_psi_z_udotr_muon_lolololo, p_r_psi_z_udotr_muon_lololohi], \
+ [p_r_psi_z_udotr_muon_lolohilo, p_r_psi_z_udotr_muon_lolohihi]], \
+ [[p_r_psi_z_udotr_muon_lohilolo, p_r_psi_z_udotr_muon_lohilohi], \
+ [p_r_psi_z_udotr_muon_lohihilo, p_r_psi_z_udotr_muon_lohihihi]]], \
+ [[[p_r_psi_z_udotr_muon_hilololo, p_r_psi_z_udotr_muon_hilolohi], \
+ [p_r_psi_z_udotr_muon_hilohilo, p_r_psi_z_udotr_muon_hilohihi]], \
+ [[p_r_psi_z_udotr_muon_hihilolo, p_r_psi_z_udotr_muon_hihilohi], \
+ [p_r_psi_z_udotr_muon_hihihilo, p_r_psi_z_udotr_muon_hihihihi]]]])
+ expected_muon = p_muon*contamination_muon*mu_muon + sacrifice['muon']*mu_signal
+
+ nll -= fast_poisson_logpmf(data['muon'],expected_muon).sum()
+
+ # Noise events
+ p_r_noise = np.array([p_r_noise_lo,1-p_r_noise_lo])
+ p_psi_noise = np.array([p_psi_noise_lo,1-p_psi_noise_lo])
+ p_z_udotr_noise = np.array([\
+ [p_z_udotr_noise_lolo,p_z_udotr_noise_lohi],
+ [p_z_udotr_noise_hilo,p_z_udotr_noise_hihi]])
+ p_noise = p_r_noise[:,np.newaxis,np.newaxis,np.newaxis]*p_psi_noise[:,np.newaxis,np.newaxis]*p_z_udotr_noise
+ expected_noise = p_noise*contamination_noise*mu_noise + sacrifice['noise']*mu_signal
+
+ nll -= fast_poisson_logpmf(data['noise'],expected_noise).sum()
+
+ # Neck events
+ # FIXME: for now assume parameterized same as muon
+ p_r_z_udotr_neck = np.array([\
+ [[p_r_z_udotr_neck_lololo, p_r_z_udotr_neck_lolohi], \
+ [p_r_z_udotr_neck_lohilo, p_r_z_udotr_neck_lohihi]], \
+ [[p_r_z_udotr_neck_hilolo, p_r_z_udotr_neck_hilohi], \
+ [p_r_z_udotr_neck_hihilo, p_r_z_udotr_neck_hihihi]]])
+ p_psi_neck = np.array([p_psi_neck_lo,1-p_psi_neck_lo])
+ p_neck = p_r_z_udotr_neck[:,np.newaxis,:,:]*p_psi_neck[:,np.newaxis,np.newaxis]
+ expected_neck = p_neck*contamination_neck*mu_neck + sacrifice['neck']*mu_signal
+ # FIXME: pdf should be different for muon given neck
+ expected_neck += p_muon*p_neck_given_muon*mu_muon
+
+ nll -= fast_poisson_logpmf(data['neck'],expected_neck).sum()
+
+ # Flasher events
+ p_r_udotr_flasher = np.array([\
+ [p_r_udotr_flasher_lolo,p_r_udotr_flasher_lohi], \
+ [p_r_udotr_flasher_hilo,p_r_udotr_flasher_hihi]])
+ p_psi_flasher = np.array([p_psi_flasher_lo,1-p_psi_flasher_lo])
+ p_z_flasher = np.array([p_z_flasher_lo,1-p_z_flasher_lo])
+ p_flasher = p_r_udotr_flasher[:,np.newaxis,np.newaxis,:]*p_psi_flasher[:,np.newaxis,np.newaxis]*p_z_flasher[:,np.newaxis]
+ expected_flasher = p_flasher*contamination_flasher*mu_flasher + sacrifice['flasher']*mu_signal
+
+ nll -= fast_poisson_logpmf(data['flasher'],expected_flasher).sum()
+
+ # Breakdown events
+ p_r_udotr_breakdown = np.array([\
+ [p_r_udotr_breakdown_lolo,p_r_udotr_breakdown_lohi], \
+ [p_r_udotr_breakdown_hilo,p_r_udotr_breakdown_hihi]])
+ p_psi_breakdown = np.array([p_psi_breakdown_lo,1-p_psi_breakdown_lo])
+ p_z_breakdown = np.array([p_z_breakdown_lo,1-p_z_breakdown_lo])
+ p_breakdown = p_r_udotr_breakdown[:,np.newaxis,np.newaxis,:]*p_psi_breakdown[:,np.newaxis,np.newaxis]*p_z_breakdown[:,np.newaxis]
+ expected_breakdown = p_breakdown*contamination_breakdown*mu_breakdown + sacrifice['breakdown']*mu_signal
+
+ nll -= fast_poisson_logpmf(data['breakdown'],expected_breakdown).sum()
+
+ # Signal like events
+ expected_signal = np.zeros_like(expected_muon)
+ expected_signal += mu_signal*sacrifice['signal']
+ expected_signal += p_muon*(1-contamination_muon)*mu_muon
+ expected_signal += p_neck*(1-contamination_neck)*mu_neck
+ expected_signal += p_noise*(1-contamination_noise)*mu_noise
+ expected_signal += p_flasher*(1-contamination_flasher)*mu_flasher
+ expected_signal += p_breakdown*(1-contamination_breakdown)*mu_breakdown
+
+ nll -= fast_poisson_logpmf(data['signal'],expected_signal).sum()
+
+ if not np.isfinite(nll):
+ print("x = ", x)
+ print("p_r_z_udotr_neck = ", p_r_z_udotr_neck)
+ print("expected_muon = ", expected_muon)
+ print("expected_noise = ", expected_noise)
+ print("expected_neck = ", expected_neck)
+ print("expected_flasher = ", expected_flasher)
+ print("expected_breakdown = ", expected_breakdown)
+ print("nll is not finite!")
+ sys.exit(0)
+
+ return nll
+ return nll
+
+def fit(data, sacrifice, steps):
+ constraints = [flasher_r_udotr, breakdown_r_udotr,muon_r_psi_z_udotr,neck_r_z_udotr,noise_z_udotr]
+ nll = make_nll(data,sacrifice,constraints)
+
+ x0 = []
+ for bg in ['signal','muon','noise','neck','flasher','breakdown']:
+ x0.append(data[bg].sum())
+
+ # contamination
+ x0 += [0.99]*5
+
+ if data['muon'].sum() > 0:
+ # P(r,psi,z,udotr|muon)
+ x0 += [data['muon'][0,0,0,0].sum()/data['muon'].sum()]
+ x0 += [data['muon'][0,0,0,1].sum()/data['muon'].sum()]
+ x0 += [data['muon'][0,0,1,0].sum()/data['muon'].sum()]
+ x0 += [data['muon'][0,0,1,1].sum()/data['muon'].sum()]
+ x0 += [data['muon'][0,1,0,0].sum()/data['muon'].sum()]
+ x0 += [data['muon'][0,1,0,1].sum()/data['muon'].sum()]
+ x0 += [data['muon'][0,1,1,0].sum()/data['muon'].sum()]
+ x0 += [data['muon'][0,1,1,1].sum()/data['muon'].sum()]
+ x0 += [data['muon'][1,0,0,0].sum()/data['muon'].sum()]
+ x0 += [data['muon'][1,0,0,1].sum()/data['muon'].sum()]
+ x0 += [data['muon'][1,0,1,0].sum()/data['muon'].sum()]
+ x0 += [data['muon'][1,0,1,1].sum()/data['muon'].sum()]
+ x0 += [data['muon'][1,1,0,0].sum()/data['muon'].sum()]
+ x0 += [data['muon'][1,1,0,1].sum()/data['muon'].sum()]
+ x0 += [data['muon'][1,1,1,0].sum()/data['muon'].sum()]
+ else:
+ x0 += [0.1]*15
+
+ if data['noise'].sum() > 0:
+ # P(r|noise)
+ x0 += [data['noise'][0].sum()/data['noise'].sum()]
+ # P(psi|noise)
+ x0 += [data['noise'][:,0].sum()/data['noise'].sum()]
+ # P(z,udotr|noise)
+ x0 += [data['noise'][:,:,0,0].sum()/data['noise'].sum()]
+ x0 += [data['noise'][:,:,0,1].sum()/data['noise'].sum()]
+ x0 += [data['noise'][:,:,1,0].sum()/data['noise'].sum()]
+ else:
+ x0 += [0.1]*5
+
+ if data['neck'].sum() > 0:
+ # P(r,z,udotr|neck)
+ x0 += [data['neck'][0,:,0,0].sum()/data['neck'].sum()]
+ x0 += [data['neck'][0,:,0,1].sum()/data['neck'].sum()]
+ x0 += [data['neck'][0,:,1,0].sum()/data['neck'].sum()]
+ x0 += [data['neck'][0,:,1,1].sum()/data['neck'].sum()]
+ x0 += [data['neck'][1,:,0,0].sum()/data['neck'].sum()]
+ x0 += [data['neck'][1,:,0,1].sum()/data['neck'].sum()]
+ x0 += [data['neck'][1,:,1,0].sum()/data['neck'].sum()]
+ # P(psi|neck)
+ x0 += [data['neck'][:,0].sum()/data['neck'].sum()]
+ else:
+ x0 += [0.1]*8
+
+ if data['flasher'].sum() > 0:
+ # P(r,udotr|flasher)
+ x0 += [data['flasher'][0,:,:,0].sum()/data['flasher'].sum()]
+ x0 += [data['flasher'][0,:,:,1].sum()/data['flasher'].sum()]
+ x0 += [data['flasher'][1,:,:,0].sum()/data['flasher'].sum()]
+ # P(psi|flasher)
+ x0 += [data['flasher'][:,0].sum()/data['flasher'].sum()]
+ # P(z|flasher)
+ x0 += [data['flasher'][:,:,0].sum()/data['flasher'].sum()]
+ else:
+ x0 += [0.1]*5
+
+ if data['breakdown'].sum() > 0:
+ # P(r,udotr|breakdown)
+ x0 += [data['breakdown'][0,:,:,0].sum()/data['breakdown'].sum()]
+ x0 += [data['breakdown'][0,:,:,1].sum()/data['breakdown'].sum()]
+ x0 += [data['breakdown'][1,:,:,0].sum()/data['breakdown'].sum()]
+ # P(psi|breakdown)
+ x0 += [data['breakdown'][:,0].sum()/data['breakdown'].sum()]
+ # P(z|breakdown)
+ x0 += [data['breakdown'][:,:,0].sum()/data['breakdown'].sum()]
+ else:
+ x0 += [0.1]*5
+
+ # P(neck|muon)
+ x0 += [EPSILON]
+
+ x0 = np.array(x0)
+
+ # Use the COBYLA algorithm here because it is the only derivative free
+ # minimization routine which honors inequality constraints
+ # Edit: SBPLX seems to work better
+ opt = nlopt.opt(nlopt.LN_SBPLX, len(x0))
+ opt.set_min_objective(nll)
+ # set lower bounds to 1e-10 to prevent nans if we predict something should
+ # be 0 but observe an event.
+ low = np.ones_like(x0)*EPSILON
+ high = np.array([1e9]*6 + [1-EPSILON]*(len(x0)-6))
+ x0[x0 < low] = low[x0 < low]
+ x0[x0 > high] = high[x0 > high]
+ opt.set_lower_bounds(low)
+ opt.set_upper_bounds(high)
+ opt.set_ftol_abs(1e-10)
+ opt.set_initial_step([1]*6 + [0.01]*(len(x0)-6))
+ #for constraint in constraints:
+ #opt.add_inequality_constraint(constraint,0)
+
+ xopt = opt.optimize(x0)
+ nll_xopt = nll(xopt)
+ print("nll(xopt) = ", nll(xopt))
+
+ while True:
+ xopt = opt.optimize(xopt)
+ if not nll(xopt) < nll_xopt - 1e-10:
+ break
+ nll_xopt = nll(xopt)
+ print("nll(xopt) = ", nll(xopt))
+ #print("n = ", opt.get_numevals())
+
+ stepsizes = estimate_errors(nll,xopt,constraints)
+ with printoptions(precision=3, suppress=True):
+ print("Errors: ", stepsizes)
+
+ #samples = metropolis_hastings(nll,xopt,stepsizes,100000)
+ #print("nll(xopt) = %.2g" % nll(xopt))
+
+ pos = np.empty((10, len(x0)),dtype=np.double)
+ for i in range(pos.shape[0]):
+ pos[i] = xopt + np.random.randn(len(x0))*stepsizes
+ pos[i,:6] = np.clip(pos[i,:6],EPSILON,1e9)
+ pos[i,6:] = np.clip(pos[i,6:],EPSILON,1-EPSILON)
+
+ for constraint in constraints:
+ if constraint(pos[i]) >= 0:
+ pos[i] = constraint.renormalize_no_fix(pos[i])
+
+ nwalkers, ndim = pos.shape
+
+ proposal = get_proposal_func(stepsizes*0.1,low,high)
+ sampler = emcee.EnsembleSampler(nwalkers, ndim, lambda x, grad, fill_value: -nll(x,grad,fill_value), moves=emcee.moves.MHMove(proposal),args=[None,np.inf])
+ with np.errstate(invalid='ignore'):
+ sampler.run_mcmc(pos, steps)
+
+ samples = sampler.chain.reshape((-1,len(x0)))
+
+ return samples
+
+if __name__ == '__main__':
+ import argparse
+ import numpy as np
+ import pandas as pd
+ import sys
+ import h5py
+ from sddm import setup_matplotlib
+
+ parser = argparse.ArgumentParser("plot fit results")
+ parser.add_argument("filenames", nargs='+', help="input files")
+ parser.add_argument("--steps", type=int, default=100000, help="number of steps in the MCMC chain")
+ parser.add_argument("--save", action="store_true", default=False, help="save plots")
+ parser.add_argument("--mc", nargs='+', required=True, help="atmospheric MC files")
+ parser.add_argument("-n", type=int, default=10, help="number of fits to run")
+ args = parser.parse_args()
+
+ setup_matplotlib(args.save)
+
+ import matplotlib.pyplot as plt
+
+ ev = get_events(args.filenames,merge_fits=True)
+ ev_mc = get_events(args.mc, merge_fits=True)
+
+ # figure out bins for high level variables
+ ev = radius_cut(ev)
+ ev = psi_cut(ev)
+ ev = cos_theta_cut(ev)
+ ev = z_cut(ev)
+ ev = udotr_cut(ev)
+
+ ev['noise'] = ev.dc & (DC_JUNK | DC_CRATE_ISOTROPY | DC_QVNHIT | DC_ITC | DC_ESUM) != 0
+ ev['neck'] = ((ev.dc & DC_NECK) != 0) & ~ev.noise
+ ev['flasher'] = ((ev.dc & DC_FLASHER) != 0) & ~(ev.noise | ev.neck) & (ev.nhit < 1000)
+ ev['breakdown'] = ((ev.dc & (DC_FLASHER | DC_BREAKDOWN)) != 0) & ~(ev.noise | ev.neck) & (ev.nhit >= 1000)
+ ev['muon'] = ((ev.dc & DC_MUON) != 0) & ~(ev.noise | ev.neck | ev.flasher | ev.breakdown)
+ ev['signal'] = ~(ev.noise | ev.neck | ev.flasher | ev.breakdown | ev.muon)
+
+ ev_mc = ev_mc[ev_mc.prompt]
+
+ # figure out bins for high level variables
+ ev_mc = radius_cut(ev_mc)
+ ev_mc = psi_cut(ev_mc)
+ ev_mc = cos_theta_cut(ev_mc)
+ ev_mc = z_cut(ev_mc)
+ ev_mc = udotr_cut(ev_mc)
+
+ ev_mc['noise'] = ev_mc.dc & (DC_JUNK | DC_CRATE_ISOTROPY | DC_QVNHIT | DC_ITC | DC_ESUM) != 0
+ ev_mc['neck'] = ((ev_mc.dc & DC_NECK) != 0) & ~ev_mc.noise
+ ev_mc['flasher'] = ((ev_mc.dc & DC_FLASHER) != 0) & ~(ev_mc.noise | ev_mc.neck) & (ev_mc.nhit < 1000)
+ ev_mc['breakdown'] = ((ev_mc.dc & (DC_FLASHER | DC_BREAKDOWN)) != 0) & ~(ev_mc.noise | ev_mc.neck) & (ev_mc.nhit >= 1000)
+ ev_mc['muon'] = ((ev_mc.dc & DC_MUON) != 0) & ~(ev_mc.noise | ev_mc.neck | ev_mc.flasher | ev_mc.breakdown)
+ ev_mc['signal'] = ~(ev_mc.noise | ev_mc.neck | ev_mc.flasher | ev_mc.breakdown | ev_mc.muon)
+
+ contamination_pull = {}
+
+ nbg = {}
+ for bg in ['signal','muon','noise','neck','flasher','breakdown']:
+ nbg[bg] = 100
+ contamination_pull[bg] = []
+
+ for i in range(args.n):
+ data = {}
+ for bg in ['signal','muon','noise','neck','flasher','breakdown']:
+ data[bg] = np.zeros((2,2,2,2),dtype=int)
+ if bg == 'signal':
+ for bg2 in ['signal','muon','noise','neck','flasher','breakdown']:
+ if bg2 == 'signal':
+ for _, row in ev_mc[ev_mc[bg2]].sample(n=nbg[bg2],replace=True).iterrows():
+ data[bg][row.radius_cut][row.psi_cut][row.z_cut][row.udotr_cut] += 1
+ else:
+ for _, row in ev[ev[bg2]].sample(n=nbg[bg2],replace=True).iterrows():
+ data[bg][row.radius_cut][row.psi_cut][row.z_cut][row.udotr_cut] += 1
+ else:
+ for _, row in ev[ev[bg]].iterrows():
+ data[bg][row.radius_cut][row.psi_cut][row.z_cut][row.udotr_cut] += 1
+
+ # FIXME: Double check that what I'm calculating here matches with what I
+ # expect
+ sacrifice = {}
+ for bg in ['signal','muon','noise','neck','flasher','breakdown']:
+ sacrifice[bg] = np.zeros((2,2,2,2),dtype=float)
+ for _, row in ev_mc[ev_mc[bg]].iterrows():
+ sacrifice[bg][row.radius_cut][row.psi_cut][row.z_cut][row.udotr_cut] += 1
+
+ sacrifice[bg] /= len(ev_mc)
+
+ samples = fit(data, sacrifice, args.steps)
+
+ (mu_signal, mu_muon, mu_noise, mu_neck, mu_flasher, mu_breakdown,
+ contamination_muon, contamination_noise, contamination_neck, contamination_flasher, contamination_breakdown,
+ p_r_psi_z_udotr_muon_lolololo, # 11
+ p_r_psi_z_udotr_muon_lololohi,
+ p_r_psi_z_udotr_muon_lolohilo,
+ p_r_psi_z_udotr_muon_lolohihi,
+ p_r_psi_z_udotr_muon_lohilolo,
+ p_r_psi_z_udotr_muon_lohilohi,
+ p_r_psi_z_udotr_muon_lohihilo,
+ p_r_psi_z_udotr_muon_lohihihi,
+ p_r_psi_z_udotr_muon_hilololo,
+ p_r_psi_z_udotr_muon_hilolohi,
+ p_r_psi_z_udotr_muon_hilohilo,
+ p_r_psi_z_udotr_muon_hilohihi,
+ p_r_psi_z_udotr_muon_hihilolo,
+ p_r_psi_z_udotr_muon_hihilohi,
+ p_r_psi_z_udotr_muon_hihihilo,
+ p_r_noise_lo, p_psi_noise_lo, # 26, 27
+ p_z_udotr_noise_lolo, # 28
+ p_z_udotr_noise_lohi,
+ p_z_udotr_noise_hilo,
+ p_r_z_udotr_neck_lololo, # 31
+ p_r_z_udotr_neck_lolohi,
+ p_r_z_udotr_neck_lohilo,
+ p_r_z_udotr_neck_lohihi,
+ p_r_z_udotr_neck_hilolo,
+ p_r_z_udotr_neck_hilohi,
+ p_r_z_udotr_neck_hihilo,
+ p_psi_neck_lo, # 38
+ p_r_udotr_flasher_lolo, p_r_udotr_flasher_lohi, p_r_udotr_flasher_hilo, # 39, ..., 41
+ p_psi_flasher_lo, p_z_flasher_lo,
+ p_r_udotr_breakdown_lolo, p_r_udotr_breakdown_lohi, p_r_udotr_breakdown_hilo, # 44, ..., 46
+ p_psi_breakdown_lo, p_z_breakdown_lo,
+ p_neck_given_muon) = samples.T
+
+ for i, bg in enumerate(['signal','muon','noise','neck','flasher','breakdown']):
+ if i == 0:
+ contamination = samples[:,i]
+ else:
+ contamination = samples[:,i]*(1-samples[:,5+i])
+ mean = np.mean(contamination)
+ std = np.std(contamination)
+ contamination_pull[bg].append((mean - nbg[bg])/std)
+
+ fig = plt.figure()
+ axes = []
+ for i, bg in enumerate(['signal','muon','noise','neck','flasher','breakdown']):
+ axes.append(plt.subplot(3,2,i+1))
+ plt.hist(contamination_pull[bg],bins=100,histtype='step')
+ plt.title(bg.capitalize())
+ for ax in axes:
+ ax.set_xlim((-10,10))
+ despine(ax=ax,left=True,trim=True)
+ ax.get_yaxis().set_visible(False)
+ plt.tight_layout()
+
+ if args.save:
+ fig.savefig("contamination_pull_plot.pdf")
+ fig.savefig("contamination_pull_plot.eps")
+ else:
+ plt.show()