aboutsummaryrefslogtreecommitdiff
path: root/utils/chi2
diff options
context:
space:
mode:
authortlatorre <tlatorre@uchicago.edu>2020-08-31 09:58:48 -0500
committertlatorre <tlatorre@uchicago.edu>2020-08-31 09:58:48 -0500
commitd0261d21c76a7d2fe740840d188775504195813e (patch)
tree53d88f96a607a0bfab552e03609a27c7c68b4417 /utils/chi2
parentc2fea4840ee186eb87ede9f3ed91cfe60b118371 (diff)
downloadsddm-d0261d21c76a7d2fe740840d188775504195813e.tar.gz
sddm-d0261d21c76a7d2fe740840d188775504195813e.tar.bz2
sddm-d0261d21c76a7d2fe740840d188775504195813e.zip
add estimate_errors to chi2 analysis
This commit updates the estimate_errors() function so that it works without a list of constraints and uses arrays of low and high bounds passed in instead of hardcoded constraints. I can now call this function from the chi2 analysis to get the stepsizes before running the MCMC.
Diffstat (limited to 'utils/chi2')
-rwxr-xr-xutils/chi219
1 files changed, 18 insertions, 1 deletions
diff --git a/utils/chi2 b/utils/chi2
index 9970bfd..b1c3c17 100755
--- a/utils/chi2
+++ b/utils/chi2
@@ -31,6 +31,18 @@ from scipy.stats import iqr, norm, beta
from scipy.special import spence
from itertools import izip_longest
from sddm.stats import *
+import contextlib
+from sddm.dc import estimate_errors
+
+# from https://stackoverflow.com/questions/2891790/how-to-pretty-print-a-numpy-array-without-scientific-notation-and-with-given-pre
+@contextlib.contextmanager
+def printoptions(*args, **kwargs):
+ original = np.get_printoptions()
+ np.set_printoptions(*args, **kwargs)
+ try:
+ yield
+ finally:
+ np.set_printoptions(**original)
# Uncertainty on the energy scale
# FIXME: These are just placeholders! Should get real number from stopping
@@ -364,9 +376,14 @@ def do_fit(data,muon,data_mc,bins,steps):
nll_xopt = nll(xopt)
print("nll(xopt) = ", nll(xopt))
+ stepsizes = estimate_errors(nll,xopt,low,high,constraints)
+
+ with printoptions(precision=3, suppress=True):
+ print("Errors: ", stepsizes)
+
pos = np.empty((20, len(x0)),dtype=np.double)
for i in range(pos.shape[0]):
- pos[i] = xopt + np.random.randn(len(x0))*xopt*0.1
+ pos[i] = xopt + np.random.randn(len(x0))*stepsizes
pos[i,:] = np.clip(pos[i,:],low,high)
nwalkers, ndim = pos.shape